Тритий что это такое


ТРИТИЙ

Содержание статьи

ТРИТИЙ – (сверхтяжелый водород), один из изотопов водорода, в ядре которого содержатся один протон и два нейтрона. Радиоактивен, период полураспада – 12,26 года; при бета-распаде превращается в гелий-3. Температура плавления – 252,2° С, температура кипения – 248,1° С.

В погоне за тритием.

Почти сразу же после открытия дейтерия (см. ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА) начались поиски в природе трития – третьего сверхтяжелого изотопа водорода, в ядре которого помимо одного протона есть два нейтрона. Физикам было очевидно, что если тритий есть в обычном водороде, он будет концентрироваться вместе с дейтерием. Поэтому сразу несколько групп исследователей, которые наладили получение тяжелой воды или имели доступ к ней, включились в погоню за новым изотопом, используя для поисков разные методы. Впоследствии обнаружилось, что почти все методы принципиально не могли дать положительных результатов, так как не обладали нужной чувствительностью.

Уже в первой работе Г.Юри, в которой был открыт дейтерий, была сделана попытка обнаружить и тритий – точно таким же образом, по заранее предсказанному теорией положению спектральных линий. Однако на спектрограммах не было даже намека на эти линии, что, в общем, не удивило исследователей. Если дейтерия в обычном водороде всего сотые доли процента, то вполне вероятно, что трития намного меньше. Вывод был ясен: надо увеличивать как чувствительность анализа, так и степень обогащения водорода его тяжелыми изотопами.

В начале 1933 известный американский физикохимик, автор теории электронных пар Гилберт Льюис совместно с химиком Франком Спеддингом повторил опыт Юри. На этот раз в распоряжении исследователей был сильно обогащенный образец, содержащий 67% дейтерия. Такой образец уже при 2-минутной экспозиции в спектрографе давал на фотопластинке четкие линии дейтерия. Но и за 40 часов экспозиции то место на пластинке, где по теории должны были проявиться линии трития, оставалось совершенно чистым. Это означало, что содержание в обычном водороде трития по крайней мере меньше, чем 1:6·106, т.е. менее одного атома 3H на 6 миллионов атомов 1H. Отсюда был сделан такой вывод: надо брать еще более концентрированные образцы, то есть подвергать электролизу уже не обычную воду для накопления D2O, а тяжелую воду для накопления Т2О (или, по крайней мере, DТО). На практике это означало, что исходной тяжелой воды надо было взять столько, сколько раньше брали обычной воды для получения тяжелой!

После неудач спектроскопистов в поиски включились специалисты по масс-спектрометрии. Этот чрезвычайно чувствительный метод позволяет анализировать ничтожные количества вещества в виде ионов. Для опытов воду сконцентрировали в 225 тысяч раз. Исследователи надеялись найти в образце ионы (DT)+ с массой 5. Ионы с такой массой были обнаружены, но оказалось, что они принадлежат трехатомным частицам (НDD)+, без какого-либо участия трития. Стало очевидным, что трития, если он и присутствует в природе, намного меньше, чем думали раньше: не больше, чем 1:5·108, то есть уже 1 атом Т на 500 миллионов атомов Н!

Синтез трития.

Пока спектроскописты и масс-спектрометристы публиковали один за другим сообщения о тритии, которые все оказались ложными, тритий был получен искусственно. Это произошло в лаборатории патриарха ядерной физики Эрнста Резерфорда. В марте 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о важном достижении – получении третьего изотопа водорода. Соавторами работы были молодой австралиец Марк Лоуренс Олифант и австриец Пауль Хартек. И если Олифант стал впоследствии академиком и директором Физического института университета Канберры, то судьба Хартека сложилась иначе. Своеобразно понимая свой долг перед немецкой наукой, он в 1934 решил возвратиться в Германию и работать для нацистского режима. В 1939 он написал письмо в высшие военные инстанции Германии о возможности создания атомного оружия, а затем попытался построить урановый котел – к счастью, безуспешно.

В 1933 лабораторию в Кембридже посетил Г.Льюис из Беркли, который подарил Резерфорду три крошечные стеклянные ампулки почти чистой тяжелой воды. Их общий объем был всего 0,5 мл. Олифант получил из этой воды немного чистого дейтерия, который служил для получения пучков ионов D+, разгонявшихся в разрядной трубке до высоких энергий. А Хартек синтезировал соединения, в которых атомы водорода были частично заменены атомами дейтерия. Так были получены ничтожные количества «утяжеленного» хлорида аммония путем обменных реакций Nh5Cl + D2O Nh4DCl + HDO, Nh4DCl + D2O Nh3D2Cl + HDO и т.д. При бомбардировке дейтерированного хлорида аммония разогнанными ионами D+ наблюдался очень интенсивный поток новых частиц. Как оказалось, это были ядра нового изотопа водорода – трития (их назвали тритонами). Стало очевидным также, что впервые в истории удалось наблюдать ядерный синтез: два атома дейтерия, сливаясь вместе, образовывали неустойчивое ядро гелия-4, которое затем распадалось с образованием трития и протона: 4He ® 3H + 1H.

В том же году Резерфорд уже демонстрировал новые ядерные превращения на своих лекциях: счетчик частиц был соединен через усилитель с громкоговорителем, так что в аудитории раздавались громкие щелчки, которые по мере повышения напряжения на разрядной трубке становились все чаще. При этом на каждый миллион дейтериевых «снарядов», попадающих в мишень, получался один атом трития – это очень много для ядерных реакций такого типа.

Итак, первый тритий был получен искусственно, в результате ядерных реакций. Вопрос о существовании его в природе оставался открытым. Искусственный синтез трития в Кембридже только подхлестнул исследователей, проводивших концентрирование тяжелой воды во все больших и больших масштабах в надежде найти тритий в природном источнике. Так, физики и химики из Принстонского университета, объединив усилия, в 1935 подвергли электролизу уже 75 тонн воды – почти две железнодорожные цистерны! В результате титанических усилий была получена крохотная ампула с остатком обогащенной воды объемом всего 0,5 мл. Это было рекордное концентрирование – в 150 миллионов раз! Масс-спектральный анализ этого остатка не дал ничего нового – в спектре по-прежнему присутствовал пик, отвечающий массе 5, который был приписан ионам (DT)+, а оценка содержания трития в природе с учетом огромного концентрирования дала отношение Т:Н ~ 7:1010, то есть не больше одного атома Т на 70 миллиардов атомов Н.

Таким образом, для обнаружения трития надо было еще больше увеличить степень концентрирования воды. Но это требовало уже гигантских затрат. К решению проблемы подключили самого Резерфорда. Используя свой огромный авторитет, он обратился с личной просьбой к норвежцам, чтобы они провели невиданный доселе по масштабам эксперимент: получили бы тяжелую воду, сконцентрировав обычную в миллиард раз! Сначала было подвергнуто электролизу 13 000 тонн обычной воды, из которых получили 43,4 кг тяжелой воды с содержанием D2O 99,2%. Далее это количество путем почти 10-месячного электролиза уменьшили до 11 мл. Условия электролиза были выбраны так, чтобы способствовать концентрированию предполагаемого трития. Таким образом, из 13 тысяч тонн воды (а это 5 железнодорожных составов по 50 цистерн в каждом!) была получена всего одна пробирка обогащенной воды. Мир не знал еще столь грандиозных опытов!

Возникла проблема, как лучше всего поступить с этим драгоценным образцом. Вероятно, единственным человеком в мире, способным непосредственно различить в масс-спектрометре очень близкие по массе ионы (DT)+ и «маскирующиеся» под них ионы (DDH)+, был нобелевский лауреат Ф.У.Астон – выдающийся специалист в области масс-спектрометрического анализа. Именно ему было решено передать образец для анализа. Результат был обескураживающим: не было никаких следов присутствия ионов DT+! Соответственно оценка отношения T:H было снижено до 1:1012. Стало очевидным, что если тритий и присутствует в природных источниках, то в таких ничтожных количествах, что его выделение из них сопряжено с неимоверными, если вообще преодолимыми трудностями.

Обнаружение природного трития.

Может ли тритий быть радиоактивным? Уже Резерфорд после неудачи со своим грандиозным опытом не исключал такой возможности. Расчеты также говорили о том, что ядро трития должно быть нестабильным и, следовательно, он должен быть радиоактивным. Именно радиоактивностью трития со сравнительно небольшим временем жизни можно было объяснить ничтожные его количества в природе. Действительно, вскоре радиоактивности у трития была обнаружена экспериментально. Конечно, это был искусственно полученный тритий. В течение 5 месяцев не было заметно спада радиоактивности. Из этого следовало, с учетом точности экспериментов, что период полураспада трития не меньше 10 лет. Современные измерения дают для периода полураспада трития 12,262 года.

При распаде тритий испускает бета-частицы, превращаясь в гелий-3. Энергия излучения трития настолько мало, что оно не может пройти даже через тоненькую стенку счетчика Гейгера. Поэтому анализируемый на присутствие трития газ необходимо запускать внутрь счетчика. С другой стороны, малая энергия излучения имеет свои преимущества – с соединениями трития (если они нелетучи) работать не опасно: испускаемые им бета-лучи проходят в воздухе всего несколько миллиметров.

Для отработки методов анализа трития потребовались значительные его количества. Поэтому стали появляться новые способы его синтеза, например, 9Be + 2H ® 8Be + 3H, 6Li + 1n ® 4He + 3H и другие. А точность анализа чрезвычайно повысилась. Стало возможным, например, анализировать образцы, в которых происходил всего один распад атома трития в секунду – в таком образце трития содержится меньше, чем 10–15 моль! Теперь в руках физиков был исключительно чувствительный метод анализа – в довоенные годы он был примерно в миллион раз чувствительнее, чем масс-спектрометрический. Настало время вернуться к поискам трития в природных источниках.

Тритий в природе.

В 1946 известный авторитет в области ядерной физики, лауреат Нобелевской премии У.Ф.Либби предположил, что тритий непрерывно образуется в результате идущих в атмосфере ядерных реакций. Первые измерения радиоактивности природного водорода, хотя и были неудачными, показали, что отношение Н:Т на 5 порядков меньше, чем думали раньше и составляет не более 1:1017. Стала очевидной невозможность обнаружения трития масс-спектрометрически даже при самых больших обогащениях: к началу 50-х годов масс-спектрометры позволяли определять концентрации примесей при их содержании не менее 10–4%.

В 1951 группа американских физиков из Чикагского университета с участием У.Либби достала хранившуюся «резерфордовскую» ампулу с 11 мл сверхобогащенной тяжелой воды, в которой Астон когда-то пытался обнаружить тритий масс-спектрометрически. И хотя с момента выделения этого образца из природной воды прошло полтора десятка лет и от содержащегося в нем трития осталось меньше половины, результат не заставил себя ждать: тяжелая вода была радиоактивна! Измеренная активность с учетом обогащения при получении образца соответствовала природному содержанию трития 1:1018.

Чтобы застраховаться от возможной ошибки, решили повторить все с самого начала, тщательно следя за каждым шагом этого решающего эксперимента. Авторы попросили норвежскую компанию приготовить еще несколько образцов обогащенной воды. Воду взяли из горного озера на севере Норвегии в январе 1948. Из нее путем электролитического концентрирования получили 15 мл тяжелой воды. Ее перегнали и ввели в реакцию с оксидом кальция: СаО + D2O ® Ca(OD)2. Восстановлением цинком при температуре красного каления из дейтероксида кальция получили дейтерий: Ca(OD)2 + Zn ® CaZnO2 + D2. Масс-спектрометрический анализ показал, что получен чистейший дейтерий, который и запустили в счетчик Гейгера для измерения его радиоактивности. Газ оказался радиоактивным, а это означало, что вода, из которой был выделен дейтерий, содержала тритий. Аналогично было приготовлено и проанализировано еще несколько образцов, чтобы уточнить, сколько же трития содержится на самом деле в природном водороде.

Исключительная тщательность работы не оставляла никаких сомнений в полученных результатах. Но еще за год до окончания этой работы вышла статья Ф.Фалтингса и того же П.Хартека из Физико-химического института при Гамбургском университете, в которой сообщалось об обнаружении трития в атмосферном водороде. Таким образом, Хартек дважды участвовал в открытии трития: сначала – искусственного, а через 16 лет – природного.

Воздух – не самый богатый источник водорода – его в нем всего 0,00005% (на уровне моря). Поэтому по заказу немецких физиков фирма «Линде» переработала сто тысяч кубометров воздуха, из которого путем сжижения и ректификации был выделен водород, а из него окислением на оксиде меди получено 80 г воды. С помощью электролиза эта вода была сконцентрирована в несколько десятков раз, затем ею был «погашен» карбид кальция: CaC2 + 2h3O ® Ca(OH)2 + С2h3, а ацетилен прогидрирован оставшимся водородом до этана: С2Н2 + 2Н2 ® С2Н6. Полученный этан, в который переходил весь исходный тритий, затем анализировали на радиоактивность. Расчет показал, что в воздухе трития (в виде молекул НТ) исключительно мало: в 20 куб. см воздуха содержится одна молекула трития, т.е. во всей атмосфере его должно быть всего... 1 моль или 3 г. Однако если учесть, что водорода в воздухе исключительно мало, то получается, что атмосферный молекулярный водород обогащен тритием в 10 000 раз больше, чем водород в составе дождевой воды. Отсюда следовало, что свободный и связанный водород в атмосфере имеют разное происхождение. Подсчет показал также, что во всех водоемах Земли трития содержится всего лишь 100 кг.

Значение, полученное в Чикаго для содержания трития в воде (Н:Т = 1:1018), стало общепринятым. Такое содержание атомов трития получило даже специальное название – «тритиевая единица» (ТЕ). В 1 л воды в среднем содержится 3,2·10–10 г трития, в 1 л воздуха – 1,6·10–14 г (при абсолютной влажности 10 мг/л). Образуется тритий в верхних слоях атмосферы с участием космического излучения со скоростью 1200 атомов в секунду в расчете на 1 м2 земной поверхности. Таким образом, в течение тысячелетий содержание трития в природе было почти постоянным – непрерывное его образование в атмосфере компенсировалось естественным распадом. Однако с 1954 (начало испытаний термоядерных бомб) положение резко изменилось и в дождевой воде содержание трития увеличилось в тысячи раз. И это не удивительно: взрыв водородной бомбы мощностью 1 мегатонна (Мт) приводит к выделению от 0,7 до 2 кг трития. Общая мощность воздушных взрывов составила за 1945–1962. 406 Мт, а наземных – 104 Мт. При этом общее количество трития, поступившее в биосферу в результате испытаний, составило сотни килограммов! После прекращения наземных испытаний уровень трития пошел на убыль. В последние годы основным источником техногенного трития в окружающей среде стали атомные электростанции, которые ежегодно выделяют несколько десятков килограммов трития.

Современные радиохимические методы позволяют с большой точностью определять содержание трития в сравнительно небольшом количестве воды, взятой из того или иного источника. Для чего это нужно? Оказывается, радиоактивный тритий с весьма удобным временем жизни – чуть больше 10 лет – может дать много ценной информации. У.Либби назвал тритий «радиоводородом», по аналогии с радиоуглеродом. Тритий может служить прекрасной меткой для изучения различных природных процессов. С его помощью можно определять возраст растительных продуктов, например, вин (если им не больше 30 лет), поскольку виноград поглощает тритий из почвенных вод, а после снятия урожая содержание трития в виноградном соке начинает снижаться с известной скоростью. Сам Либби провел множество подобных анализов, переработав сотни литров различных вин, поставленных ему виноделами из разных местностей. Анализ атмосферного трития дает ценную информацию о космических лучах. А тритий в осадочных породах может свидетельствовать о перемещениях воздуха и влаги на Земле.

Наиболее богатые природные источники трития – дождь и снег, поскольку почти весь тритий, образующийся под действием космических лучей в атмосфере, переходит в воду. Интенсивность космической радиации изменяется с широтой, поэтому осадки, например, в средней полосе России несут в несколько раз больше трития, чем тропические ливни. И совсем мало трития в дождях, которые идут над океаном, поскольку их источник – в основном та же океаническая вода, а ней трития немного. Понятно, что глубинный лед Гренландии или Антарктиды совсем не содержит трития – он там давно успел полностью распасться. Зная скорость образования трития в атмосфере, можно рассчитать, как долго влага находится в воздухе – с момента ее испарения с поверхности до выпадения в виде дождя или снега. Оказалось, что, например, в воздухе над океаном этот срок составляет в среднем 9 дней.

Запасы природного трития ничтожны. Поэтому весь тритий, используемый для различных целей, получают искусственно, путем облучения лития нейтронами. В результате стало возможным получить значительные количества чистого трития и изучить его свойства, а также свойство его соединений. Так, сверхтяжелая вода Т2О имеет плотность 1,21459 г/см3. Синтезированный тритий сравнительно дешев и находит применение в научных исследованиях и в промышленности. Широкое применение нашли тритиевые светящиеся краски, которые наносят на шкалы приборов. Эти светосоставы с точки зрения радиации менее опасны, чем традиционные радиевые. Например, сульфид цинка, содержащий небольшое количество соединений трития (примерно 0,03 мг на 1 г светосостава), непрерывно излучает зеленый свет. Такие светосоставы постоянного действия используют для изготовления указателей, шкал приборов и т.п. На их производство ежегодно расходуют сотни граммов трития.

Тритий присутствует и в человеческом организме. Он поступает в него с пищей, с вдыхаемым воздухом и через кожу (12%). Интересно, что газообразный Т2 в 500 раз менее токсичен, чем сверхтяжелая вода Т2О. Это объясняется тем, что молекулярный тритий, попадая с воздухом в легкие, затем быстро (примерно за 3 мин) выделяется из организма, тогда как тритий в составе воды задерживается в нем на 10 суток и успевает за это время передать ему значительную дозу радиации. В среднем организм человека содержит 5·10–12 г трития, что дает вклад 0,13 мбэр в общую дозу годового облучения (это в сотни раз меньше облучения от других источников радиации). Интересно, что у людей, носящих часы, в которых стрелки и цифры покрыты тритиевым люминофором, содержание трития в теле в 5 раз выше среднего.

А еще тритий является одним из основных компонентов взрывчатого вещества термоядерных (водородных) бомб, а также весьма перспективен для проведения управляемой термоядерной реакции по схеме D + T > 4He + n.

Илья Леенсон

www.krugosvet.ru

Тритий - Химия

Еще совсем недавно люди считали, что атом – это цельная неделимая частица. Позднее стало ясно, что он состоит из ядра и вращающихся вокруг него электронов. При этом центральная часть снова считалась неделимой и цельной.

Сегодня мы знаем, что она состоит из протонов и нейтронов. Причем, в зависимости от числа последних, у одного и того же вещества может быть несколько изотопов.

Итак, тритий – что это такое? Что это за вещество, как его получить и использовать?

Тритий – что это такое?

Водород – самое простое вещество в природе. Если говорить про его самую распространенную форму, о которой подробнее будет сказано чуть ниже, то его атом состоит лишь из одного протона и одного электрона.

Однако он может принимать и “лишние” частицы, которые несколько меняют его свойства. Так, ядро трития состоит из протона и двух нейтронов.

И если протий, то есть самая простая форма водорода – это самый распространенный во вселенной элемент, то про его “улучшенную” версию этого не скажешь – в природе он встречается в незначительных количествах.

Изотоп водорода тритий (название происходит от греческого слова “третий”) был открыт в 1934 году Резерфордом, Олифантом и Хартеком. И на самом деле, найти его пытались очень долго и упорно.

Сразу после открытия дейтерия и тяжелой воды в 1932 году ученые стали искать этот изотоп с помощью повышения чувствительности спектрального анализа при изучении обычного водорода.

Однако, несмотря ни на что, их попытки были тщетны – даже в самых концентрированных образцах не удавалось получить даже намек на присутствие вещества, которое было просто обязано существовать. Но в итоге поиски все-таки увенчались успехом – Олифант синтезировал элемент с помощью тяжелой воды в лаборатории Резерфорда.

Если коротко, то определение трития звучит следующим образом: радиоактивный изотоп водорода, ядро которого состоит из протона и двух нейтронов. Итак, что о нем известно?

Об изотопах водорода

Первый элемент периодической таблицы является одновременно наиболее распространенным во Вселенной. При этом в природе он встречается в виде одного из трех своих изотопов: протия, дейтерия или трития.

Ядро первого состоит из одного протона, что и дало ему название. Кстати, это единственный стабильный элемент, у которого отсутствуют нейтроны. Следующим в ряду изотопов водорода является дейтерий.

Ядро его атома состоит из протона и нейтрона, а название восходит к греческому слову “второй”.

В лаборатории были получены также еще более тяжелые изотопы водорода с массовыми числами от 4 до 7. Период их полураспада ограничивается долями секунд.

Свойства

Атомная масса трития составляет примерно 3,02 а. е. м. По своим физическим свойствам это вещество почти не отличается от обычного водорода, то есть в нормальных условиях является легким газом без цвета, вкуса и запаха, обладает высокой теплопроводностью.

При температуре около -250 градусов по Цельсию становится легкой и текучей бесцветной жидкостью. Диапазон, в пределах которых он находится в данном агрегатном состоянии довольно узок. Температура плавления составляет около 259 градусов по Цельсию, ниже которой водород становится снегоподобной массой.

Кроме того, этот элемент довольно хорошо растворяется в некоторых металлах.

Однако есть и некоторые отличия в свойствах. Во-первых, третий изотоп обладает меньшей реакционной способностью, а во-вторых, тритий радиоактивен и в связи с этим нестоек. Период полураспада составляет чуть более 12 лет. В процессе радиолиза он превращается в третий изотоп гелия с испусканием электрона и антинейтрино.

Получение

В природе тритий содержится в незначительных количествах и образуется чаще всего в верхних слоях атмосферы при соударении космических частиц и, например, атомов азота. Однако существует и промышленный метод получения этого элемента с помощью облучения лития-6 нейтронами в ядерных реакторах.

Синтез трития в объеме, масса которого составляет около 1 килограмма, обходится примерно в 30 миллионов долларов.

Использование

Итак, мы немного больше узнали про тритий – что это такое и его свойства. Но зачем он нужен? Разберемся чуть ниже. По некоторым данным мировая коммерческая потребность в тритии составляет порядка 500 граммов в год, еще около 7 килограмм уходит на военные нужды.

По данным американского института исследований энергетики и окружающей среды, с 1955 по 1996 год в США было произведено 2,2 центнера сверхтяжелого водорода. А на 2003 год общие запасы этого элемента составляли около 18 килограмм. Для чего же они используются?

Во-первых, тритий необходим для поддержания боеспособности ядерного оружия, которым, как известно, пока еще обладают некоторые страны. Во-вторых, без него не обходится термоядерная энергетика. Еще тритий используется в некоторых научных исследованиях, например, в геологии с его помощью датируют природные воды.

Еще одно назначение – источник питания подсветки в часах. Кроме того, в настоящее время проводятся эксперименты по созданию радиоизотопных генераторов сверхмалой мощности, например, для питания автономных датчиков. Ожидается, что в этом случае срок их службы составит около 20 лет.

Стоимость такого генератора составит порядка одной тысячи долларов.

В качестве оригинальных сувениров также существуют брелки с небольшим количеством трития внутри. Они издают свечение и выглядят довольно экзотично, особенно если знать о внутреннем содержании.

Опасность

Тритий радиоактивен, именно этим объясняется часть его свойств и видов использования. Его период полураспада составляет около 12 лет, при этом образуется гелий-3 с испусканием антинейтрино и электрона. В процессе этой реакции выделяется 18,59 кВт энергии и бета-частицы распространяются в воздухе.

Обывателю может показаться странным, что радиоактивный изотоп используется, скажем, для подсветки в часах, ведь это может быть опасным, разве нет? На самом деле тритий едва ли чем-то угрожает человеческому здоровью, поскольку бета-частицы в процессе его распада распространяются максимум на 6 миллиметров и не могут преодолеть простейшие преграды. Впрочем, это не значит, что работа с ним абсолютно безопасна – любое попадание внутрь с пищей, воздухом или впитывание через кожу может привести к проблемам. Хотя в большинстве случаев он легко и быстро выводится, так бывает не всегда. Итак, тритий – что это такое с точки зрения радиационной опасности?

Меры защиты

Несмотря на то что малая энергия распада трития не позволяет радиации серьезно распространяться, так что бета-частицы не могут преодолеть даже кожу, не стоит пренебрегать своим здоровьем.

При работе с этим изотопом можно, конечно, не использовать костюм радиационной защиты, но элементарные правила, такие как закрытая одежда и хирургические перчатки, соблюдать необходимо.

Поскольку основную опасность тритий представляет при попадании внутрь, важно пресечь деятельность, при которой это станет возможным. В остальном беспокоиться не о чем.

Если все же он в большом количестве поступил в ткани организма, может развиться, острая или хроническая лучевая болезнь в зависимости от длительности, дозы и регулярности воздействия. В некоторых случаях этот недуг успешно излечивается, но при обширных поражениях возможен летальный исход.

В любом нормальном организме есть следы трития, хоть они и абсолютно незначительны и едва ли влияют на радиационный фон. Ну а у любителей часов со светящимися стрелками его уровень выше в несколько раз, хотя и все равно считается безопасным.

Сверхтяжелая вода

Тритий, как и обычный водород, может образовывать новые вещества. В частности, он входит в молекулу так называемой сверхтяжелой (супертяжелой) воды. Свойства этого вещества не слишком отличаются от привычной каждому человеку h3O.

При том, что тритиевая вода также может участвовать в метаболизме, она отличается довольно высокой токсичностью и выводится в течение десятидневного срока, за который ткани могут получить довольно высокую степень облучения.

И хотя данное вещество менее опасно само по себе, оно является более опасным в связи с периодом, на протяжении которого находится в организме.

Источник: http://fb.ru/article/225425/tritiy---chto-eto-takoe-massa-tritiya

Тритий: что это такое, особенности, свойства и производство

Энергия реакций распада и синтеза в ядре атома давно нашла применение в науке и технике. Она используется в промышленности, оружии, геологии, на атомных электростанциях.

Процессы ядерных реакций могут приносить как пользу, так и огромный вред.

В статье речь пойдет о том, что это такое – тритий, как он добывается, о его использовании в атомной энергетике и какие опасности связаны с его применением.

Изотопы водорода

Прежде чем объяснить, что это такое тритий, необходимо познакомиться с понятием изотопа.

Атом любого вещества состоит из ядра и электронов (отрицательно заряженных частиц), движущихся по орбитам вокруг него. Ядро атома содержит положительно заряженные частицы – протоны, и частицы с нейтральным зарядом – нейтроны.

В обычном атоме число электронов и протонов совпадает, а вот количество нейтронов может отличаться. В этом случае элементы, имеющие разное число нейтронов в ядре, называются изотопами элемента.

Водород имеет заряд 1, то есть в нем содержится один электрон и один протон. Его изотопы – протий, дейтерий и тритий. Слово “протий” образовано от греческого слова “первый”. Этот элемент имеет лишь один протон в ядре. По сути, он представляет собой привычный нам водород.

Дейтерий означает “второй”. В его ядре имеется один протон и один нейтрон. А тритий переводится как “третий” и содержит в ядре опять же один протон, но два нейтрона.

Краткий ответ на вопрос “Тритий – что это такое?” выглядит так: это третий изотоп химического элемента водорода.

Названия для изотопов 1Н и 2Н – протия и дейтерия – были предложены американским физиком Гарольдом Юри. Обнаружив существование дейтерия, ученые сразу предположили наличие третьего изотопа водорода, имеющего два нейтрона в ядре.

Юри для исследований использовал метод спектрального анализа. Однако результатов он не дал. Оказалось, что концентрация трития слишком мала, чтобы его можно было обнаружить традиционными способами. В природе это вещество практически невозможно найти.

Поэтому для исследований стали использоваться другие методы, например, масс-спектрометрия.

В 1934 году Эрнест Резерфорд сумел искусственно получить третий изотоп при помощи ядерных реакций. Само собой, название было выбрано заранее, и, по аналогии с протием и дейтерием, он стал называться тритием.

Дефект масс и энергия связи трития

Одним из ключевых в физике элементарных частиц является понятие энергии связи атомных ядер. Под энергией связи ядра трития понимают то количество энергии, которое необходимо, чтобы произошло расщепление его ядра на отдельные нуклоны. Поскольку ядра удерживаются так называемым сильным взаимодействием, требуется большое количество энергии, чтобы их расщепить.

Чтобы высчитать энергию связи ядра, необходимо знать массу субатомных частиц. Известно, что масса покоя ядра меньше суммарной массы нуклонов в его составе. Разницу между массами ядра и суммами его нуклонов называют дефектом масс.

Дефект массы трития, как и других ядер, рассчитывается по формуле:

Δm = (Z*mp + N*mn) – Мя, где

Z – число протонов;

N – число нейтронов;

mp – масса протона;

mn – масса нейтрона;

Мя – масса ядра.

Удельная энергия связи для элемента трития составляет 2 827,2 кэВ на нуклон.

Тритий в природе

Количество этого изотопа в природе является ничтожным. Связано это с его радиоактивностью, то есть нестабильностью ядра.

В природе он вырабатывается в основном в верхних слоях атмосферы. Его формирование осуществляется при сталкивании частиц космических лучей с ядрами атомов, например, азота. Поскольку тритий образуется в атмосфере, его источники на Земле – осадки (дождь и снег).

По подсчетам ученых, в чистом виде трития на Земле содержится едва ли более 1 кг. Поэтому его вырабатывают искусственно, в лабораторных условиях.

В настоящее время получение данного изотопа не представляет трудностей, но является чрезвычайно дорогостоящим процессом. Для изготовления одного килограмма вещества требуются затраты в размере 30 млн долларов.

В качестве сырья используют чаще всего литий. Реже – бериллий или бор. Литий подвергают нейтронному облучению на циклотроне. Затем его растворяют в воде, получая водород, в составе которого имеется тритий. Половина лития приходит в негодность в результате этого процесса и отравляется в утиль.

Для получения водорода с тритием из бериллия и бора их обрабатывают серной кислотой.

Еще одним способом получения изотопа является облучение тяжелой воды дейтронами. Тяжелая вода – вещество, образующееся из дейтерия (другое название – оксид дейтерия). После облучения такую воду подвергают электролизу и затем извлекают тритий.

В настоящее время элемент производится в основном на территории США, Канады и России.

Тритий является радиоактивным. При его распаде выделяется бета-излучение, представляющее собой поток электронов.

При внешнем облучении организма тритий не наносит серьезного вреда. Однако при попадании внутрь с водой, пищей или воздухом он может нанести существенный ущерб здоровью.

Дело в том, что являясь изотопом водорода, тритий способен замещать его в химических соединениях. Таким образом, он попадает внутрь живых клеток и встраивается в их структуру.

Это сказывается на генетической информации клетки.

Как было сказано, в природе тритий практически не встречается, поэтому едва ли может нанести вред живым организмам. Однако предприятия атомной промышленности становятся источником искусственной выработки этого изотопа. Атомные электростанции выбрасывают тритий в жидком и газообразном состоянии.

Причина этого в том, что изотоп практически не фильтруется. В год на АЭС образуется до 4 кг трития. Результатом выбросов становится радиоактивное загрязнение почвы, воздуха и воды. Таким образом, он является потенциальным источником заражения живых организмов.

Именно поэтому тритий был занесен в список контролируемых параметров при оценке качества питьевой воды.

Применение

Основное направление использования трития – атомная промышленность. Дело в том, что реакция слияния дейтерия и трития приводит к управляемому термоядерному синтезу.

Энергия связи трития настолько велика, что в ходе термоядерных реакций вырабатывается в огромном количестве, в разы больше, чем при реакциях распада атомных ядер, поэтому управляемые термоядерные реакции могут стать главным источником энергии на Земле на многие годы.

В связи с этим ученые в настоящее время работают над строительством термоядерного реактора, в котором процессы синтеза ядер происходили бы в крупных масштабах. Наиболее известный проект такого реактора – строящийся в настоящее время ITER (ИТЭР) во Франции.

Производство трития может успешно применяться для военных целей, например, при создании термоядерного оружия.

С использованием трития изготавливаются специальные светящиеся краски. Это обусловлено радиолюминесценцией – явлением свечения элемента при радиоактивном распаде. Светящиеся краски наносят на шкалы приборов, а также используются для изготовления брелоков и часов. Количество трития в них не настолько велико, чтобы нести угрозу для здоровья.

Тритий применяется в качестве индикатора химических реакций.

Наконец, этот изотоп используется для определения возраста объектов, которым не более 100 лет, например, вин.

Итак, что это такое – тритий? Выводы:

  1. Тритий – изотоп водорода, имеющий в ядре один протон и два нейтрона.
  2. Изотоп практически не встречается в природе, но успешно производится в лабораториях.
  3. Тритий радиоактивен, и его использование может принести человечеству и пользу, и вред.

Источник: https://www.nastroy.net/post/tritiy-chto-eto-takoe-osobennosti-svoystva-i-proizvodstvo

Тритиевые брелки и радиация от них

Популярные тритиевые брелки вызывают множество споров: кто-то в восторге от ярких, компактных и «вечно» светящихся изделий, а кто-то говорит об их радиоактивности и опасности для здоровья.

Производители же уверены в безопасности своей продукции и предлагают тритиевые маркеры в качестве альтернативных источников света, не теряющих яркости свечения на протяжении 25лет.

Кому же верить? Попробуем разобраться.

Что такое тритий?

Природный тритий (Т или Н-3) – сверхтяжелый радиоизотоп водорода с периодом полураспада 12,5 лет. Он постоянно образуется в атмосфере при взаимодействии нейтронов вторичного космического облучения с ядрами кислорода, азота или аргона.

Изотоп быстро переходит в молекулы обычной воды, содержащейся в воздухе, а затем в виде дождей выпадает на землю. В биосфере его содержится чрезвычайно мало – не более 2 кг, причем большая часть (90%) радионуклида сконцентрирована в воде.

Техногенный тритий получают путем облучения нейронами изотопов лития-6 или урана и плутония в атомных реакторах. Эта технология отличается трудоемкостью и дороговизной – синтез 1 кг трития обходится в 30 миллионов долларов. Он может быть также выделен и концентрирован в процессе очистки тяжелой воды, используемой в атомных реакторах в качестве замедлителя.

Секрет свечения тритиевых брелоков

Свечение брелока обеспечивается подсветкой на основе газообразного трития, которая по своей яркости превосходит остальные светосоставы постоянного действия. Главный компонент светоэлемента – прозрачная запаянная трубочка из карбонатного стекла, изнутри покрытая люминесцирующим составом и заполненная газообразным тритием.

Радионуклид испускает бета-электроны, которые бомбардируют люминофор и вызывают яркое свечение. Брелок способен равномерно светиться в течение 12 лет без подзарядки, поскольку период полураспада трития составляет 12,5 лет, а время полного разложения этого радиоактивного изотопа – 25 лет.

То есть и спустя гарантированный срок брелоки будут светиться, далее интенсивность светового излучения трития падает, но не более чем на 40%.

Токсичность газообразного трития

Газообразный тритий – важный биологический радиоизотоп, испускающий слабое бета-излучение. Из-за малой длины пробега – не более 5,8 мм, бета-частицы трития разрушаются в воздухе или полностью задерживаются кожей человека. В большей степени изотоп опасен при попадании внутрь организма во время дыхания или приема пищи и еды.

Излучаемые им электроны низкой энергии создают повышенную ионизацию вокруг себя, вызывая повреждение биологических тканей и органов. Негативное воздействие также оказывает тормозное рентгеновское излучение, которое возникает при торможении испускаемых тритием электронов в электростатистическом поле люминофора.

И хоть оно ослабляется стеклом, но все же, дает излучение до 10 мкР/ч на расстоянии одного сантиметра.

Первые световые элементы на основе трития

Первой компанией, начавшей в 1918 году использовать тритиевый газ в качестве основы для люминесцентной краски, стала компания Mb-microtec AG (Швейцария).К сожалению, полученная тритиевая краска быстро разлагалась и вступала во взаимодействие с водой, образуя высокорадиоактивную тритиевую воду.

После долгих поисков компания создала технологию GTLS и начала выпускать газовые тритиевые источники света под маркой Trigalight. Тригалайт представляет собой боросиликатную трубку диаметром 12 мм и длиной 1,5 метра. В процессе изготовления источников она вытягивается на специальном станке, разработанном и запатентованном специалистами компании.

В результате получается до 120 полуметровых стекленных колбочек шириной 0,5 мм.

Каждая из них изнутри покрывается светоотражающей краской и заполняется тритиевым газом. Поскольку от его количества зависит яркость свечения и срок службы готового тригалайта, в емкости закачивается как можно больше газа.

На заключительном этапе длинные трубки, заполненные тритием, разрезаются лазером на кусочки, концы при этом моментально запаиваются. После резки готовые тригалайты проверяются на герметичность оператором в темной комнате.

Ежегодно компания Mb-microtec AG выпускает до 10 миллионов тригалайтов разных размеров и цветов, которые используются для подсветки не только брелоков, но и информационных табличек, морских компасов, портативных фонариков, циферблатов и стрелок ручных часов.

Тритиевая подсветка, размещенная на прицеле ручного огнестрельного оружия, решила проблему с точностью наведения, возникающую при ведении ночной стрельбы.

Яркие тригалайты успешно используются ведущими производителями боевого оружия: Калашников, Kriss, Glock, Beretta.

Помимо компании Mb-microtec AG подобные источники света выпускаются канадской фирмой SRBT, ими оснащается подсветка коридоров коммерческих и военных самолетов.

Альтернативные тритиевые светосоставы Существуют другие источники постоянного света на основе трития.

В таких светосоставах, формулы которых держатся производителями в секрете, он находится виде тритированных смол, жирных кислот или поверхностно-активных веществ, связанных с люминофором.

Однако, самосветящиеся тритиевые краски не используются в тритиевых брелоках, поскольку они значительно уступают по яркости свечения тригалайту и более опасны в радиационном плане.

Тригалайт – безопасная люминесцентная альтернатива

Световые источники тригалайт фиксируются в изделиях таким образом, что при соблюдении термических и механических условий эксплуатации, становится маловероятной поломка капсулы и утечка газообразного трития. Многочисленные исследования подтвердили безопасность этих светоисточников вследствие малого размера капсул и прочного карбонатного стекла, а также их соответствие международному стандарту качества ISO 9001.

К сожалению, сегодня рынок наводнен дешевыми тритиевыми брелоками, сделанными в Китае. В них используются стеклянные капсулы, похожие на тригалайты, но дающие превышение радиационного фона в несколько раз.

Специалисты предполагают, что китайские фабрики вместо трития используют другой, более дешевый газообразный изотоп, который испускает более сильное бета-излучение и негативно влияет на здоровье человека.

Тритиевый брелок: опасен или нет?

Тритий всегда присутствует в организме человека, поступая вместе с пищей, воздухом и через кожу.

Находясь в газообразном состоянии, он не представляет большой опасности, посколькуобразующиеся при распаде трития бета-частицы обладают слабым проникающим действием и быстро поглощаются воздушным слоем толщиной 5 мм.

Если он и попадает в легкие, то очень быстро, буквально за три минуты выводится из организма. Намного опасней для организма водный раствор трития.

Так называемая тритиевая вода в 500 раз токсичнее, чем газообразный радионуклид, поскольку задерживается в организме до десяти дней и успевает передать значительную дозу радиации органам и тканям.

Внутреннее облучение еще опасно тем, что тритий легко замещает водород в белках, жирах и углеводах, проникая в протоплазму клетки.

Образуемые им бета-частицы, хоть и отличаются малым пробегом, но способны повреждать генетический аппарат клетки и внутренние органы человека.

Интересный факт В среднем организм человека содержит 5х10-12грамм трития. Но у людей, носящих часы с циферблатом, покрытым тритиевым люминофором, эта норма превышена в 5 раз!

Чем измерить радиоактивное излучение тритиевого брелока?

Газообразный тритий действительно излучает слабое бета-излучение, которое способен уловить не каждый дозиметр.

Для этого нужен прибор с чувствительным счетчиком Гейгера, например, дозиметр RADEX RD1008 или дозиметр-радиометр РАДЭКС МКС-1009.

В данных приборах установлены счетчики Гейгера-Мюллера БЕТА-2 (с слюдяным окном) и БЕТА-2М.

Источник: https://www.quarta-rad.ru/useful/ekologia-zdorovie/tritievye-brelki-radiaciya/

Тритий

тритий водорода, тритий лишнийТри́тий (др.-греч. τρίτος «третий»), сверхтяжёлый водород, обозначается символами T и 3H — радиоактивный изотоп водорода. Ядро трития состоит из протона и двух нейтронов, его называют тритоном и обозначают t.

В природе тритий образуется в верхних слоях атмосферы при соударении частиц космического излучения с ядрами атомов, например, азота. В процессе распада тритий превращается в 3He с испусканием электрона и антинейтрино (бета-распад), период полураспада — 12,32 года.

Доступная энергия распада очень мала (18,59 кэВ), средняя энергия электронов 5,7 кэВ.

Тритий открыт английскими учёными Эрнестом Резерфордом, Маркусом Олифантом и Паулем Хартеком в 1934 году.

Используется в биологии и химии как радиоактивная метка, в экспериментах по исследованию свойств нейтрино, в термоядерном оружии как источник нейтронов и одновременно термоядерное горючее, в геологии для датирования природных вод. Промышленный тритий получают облучением лития-6 нейтронами в ядерных реакторах по следующей реакции:

.

  • 1 Радиационная опасность трития
  • 2 Производство и потребность
  • 3 Интересные факты
  • 4 Примечания
  • 5 Ссылки

Радиационная опасность трития

Тритий имеет период полураспада (12,32 ± 0,02) года. Реакция распада трития имеет следующий вид:

.

При этом выделяется 18,59 кэВ энергии, из них на электрон (бета-частицу) приходится в среднем 5,7 кэВ, а на электронное антинейтрино — оставшаяся часть. Образовавшиеся бета-частицы распространяются в воздухе всего на 6,0 мм и не могут преодолеть даже верхний слой кожи человека.

В силу малой энергии распада трития, испускаемые электроны хорошо задерживаются даже простейшими преградами типа одежды или резиновых хирургических перчаток.

Тем не менее, этот изотоп представляет радиационную опасность при вдыхании, поглощении с пищей, впитывании через кожу.

Единичный случай употребления тритиевой воды не приводит к длительному накоплению трития в организме, так как его период полувыведения — от 7 до 14 дней.

Производство и потребность

По данным отчета Institute for Energy and Environmental Research 1996 года, в США с 1955 года было произведено около 225 кг трития. Из-за распада и использования, от них сохранилось не более 75 кг.

В конце 20-начале 21 века наработка ведется на Watts Bar-1 путем облучения TPBAR (англ. tritium-producing burnable absorber rods), планируется также использование АЭС Секвойя.

Переработка и выделение трития происходит на Tritium Extraction Facility», Саванна-Ривер.

В СССР и России тритий производился на реакторах АИ, АВ-3, ОК-180, ОК-190, РУСЛАН, Л-2; изотоп выделяется на заводе РТ-1 (ПО «Маяк»).

Значительные количества трития, до 2,5-3,5 кг, для гражданских применений производит Канада на 21 тяжеловодном реакторе. Выделение изотопа — компания «Онтарио Хайдро», Дарлингтон.

Мировая коммерческая потребность в тритии на 1995 год составляет ежегодно около 400 г, и ещё порядка 2 кг требовалось для поддержания ядерного арсенала США (7 кг для всех мировых военных потребителей). Около 4 кг трития в год образуется на АЭС, но не извлекается.

Большие количества трития потребуются для термоядерной энергетики, например, для запуска ITER потребуется как минимум около 3 кг трития, для запуска DEMO понадобится 4-10 кг. Гипотетический тритиевый реактор потреблял бы 56 кг трития на производство 1 ГВт·года электроэнергии, тогда как всемирные запасы трития на 2003 год составляли всего 18 кг.

Интересные факты

Тритиевый брелок, свечение в темноте (снимок с длительной экспозицией).

  • Производство одного килограмма трития обходится в 30 млн долларов.
  • Используется в источниках подсветки для часов.
  • Проводятся эксперименты по созданию радиоизотопных генераторов электричества сверхмалой мощности на базе трития, например для питания RFID меток или автономных датчиков. Срок службы генератора составляет около 20 лет, цена – порядка 1000 долларов.

Примечания

  1. ↑ 1234 G. Audi, A.H. Wapstra, and C. Thibault (2003). «The AME2003 atomic mass evaluation (II). Tables, graphs, and references.». Nuclear Physics A 729: 337—676. DOI:10.1016/j.nuclphysa.2003.11.003. Bibcode: 2003NuPhA.729..337A.
  2. ↑ 123 G. Audi, O. Bersillon, J. Blachot and A. H.

    Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties». Nuclear Physics A 729: 3–128. DOI:10.1016/j.nuclphysa.2003.11.001. Bibcode: 2003NuPhA.729….3A.

  3. ↑ http://energy.gov/sites/prod/files/2013/09/f2/hdbk1079.pdf
  4. ↑ Nuclide safety data sheet: Hydrogen-3. ehso.emory.edu.
  5. ↑ Backgrounder on Tritium, Radiation Protection Limits, and Drinking Water Standards (англ.). U.S.NRC (февраль 2011). Проверено 5 октября 2012. Архивировано из первоисточника 14 октября 2012.
  6. ↑ R. V. Osborne.

    Review of the Greenpeace report: «Tritium Hazard Report: Pollution and Radiation Risk from Canadian Nuclear Facilities» (англ.) (pdf). Canadian Nuclear Association (август 2007). Проверено 5 октября 2012. Архивировано из первоисточника 14 октября 2012.

  7. ↑ Zerriffi, Hisham.

    Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy's decision to produce tritium. Institute for Energy and Environmental Research (January 1996). Проверено 15 сентября 2010. полный текст

  8. ↑ МИХАИЛ СТОРОЖЕВОЙ. Третируемый тритий. ATOMINFO.RU (28.10.2010). Проверено 13 ноября 2013.
  9. ↑ Производство плутония и трития для ядерного оружия. Стратегическое ядерное вооружение СССР и России.. Проверено 13 ноября 2013.
  10. ↑ Бекман. 6. РЕАКТОРЫ ДЛЯ НАРАБОТКИ ТРИТИЯ. Проверено 13 ноября 2013.
  11. ↑ Martin В. Kalinowski, Lars С.

    Colschen International Control of Tritium to Prevent Horizontal Proliferation and to Foster Nuclear Disarmament // Science & Global Security, 1994, vol. 5, рр. 131—203  (рус.)

  12. ↑ Hisham Zerriffi. Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy’s decision to produce tritium.

    Institute for Energy and Environmental Research (1996). Проверено 13 ноября 2013.

  13. ↑ International Control of Tritium for Nuclear Nonproliferation and Disarmament, CRC Press, 2004, page 15
  14. ↑ 12 Tritium Supply Considerations, LANL, 2003.

    «ITER startup inventory estimated to be ~3 Kg»

  15. ↑ BBC News — Is fusion power really viable?
  16. ↑ НЕЗАМЕНИМЫЕ БАТАРЕЙКИ: СИЛА ТРИТИЯ, Популярная Механика (27.08.12). Проверено 13 ноября 2013. «Размерами с фалангу пальца, они используют радиоактивный распад для производства электричества – в небольших количествах, зато непрерывно в течение минимум лет двадцати. … цена остается пока на уровне 1000 долларов».

Ссылки

  • ТРИТИЙ — химическая энциклопедия
  • ТРИТИЙ — справочник по веществам

тритий, тритий википедия, тритий водорода, тритий лишний, тритий лишний 2

Тритий Информацию О

Тритий

ТритийТритий Вы просматриваете субъектТритий что, Тритий кто, Тритий описание

There are excerpts from wikipedia on this article and video

Наш сайт имеет систему в функции поисковой системы. Выше: “что вы искали?”вы можете запросить все в системе с коробкой. Добро пожаловать в нашу простую, стильную и быструю поисковую систему, которую мы подготовили, чтобы предоставить вам самую точную и актуальную информацию.

Поисковая система, разработанная для вас, доставляет вам самую актуальную и точную информацию с простым дизайном и системой быстрого функционирования. Вы можете найти почти любую информацию, которую вы ищете на нашем сайте.

На данный момент мы служим только на английском, турецком, русском, украинском, казахском и белорусском языках. Очень скоро в систему будут добавлены новые языки.

Жизнь известных людей дает вам информацию, изображения и видео о сотнях тем, таких как политики, правительственные деятели, врачи, интернет-сайты, растения, технологические транспортные средства, автомобили и т. д.

Источник: https://www.turkaramamotoru.com/ru/%D0%A2%D1%80%D0%B8%D1%82%D0%B8%D0%B9-188203.html

Радиационная опасность трития[ | ]

Тритий имеет период полураспада (12,32 ± 0,02) года[2]. Реакция распада трития имеет следующий вид:

1 3 H → 2 3 H e 1 + + e − + ν ¯ e {\displaystyle {}\mathrm {{}_{1}{3}H} \rightarrow \mathrm {{}_{2}{3}He{1+}} +e{-}+{\bar {u }}_{e}} .

При этом выделяется 18,59 кэВ энергии, из них на электрон (бета-частицу) приходится в среднем 5,7 кэВ, а на электронное антинейтрино — оставшаяся часть. Образовавшиеся бета-частицы распространяются в воздухе всего на 6,0 мм и не могут преодолеть даже верхний слой кожи человека[6].

В силу малой энергии распада трития испускаемые электроны хорошо задерживаются даже простейшими преградами типа одежды или резиновых хирургических перчаток.

Тем не менее, этот изотоп представляет радиационную опасность при вдыхании, поглощении с пищей, впитывании через кожу.

Единичный случай употребления тритиевой воды не приводит к длительному накоплению трития в организме, так как его период полувыведения — от 7 до 14 дней[7][8].

Производство и потребность[ | ]

По данным отчета Institute for Energy and Environmental Research (англ.) 1996 года, в США с 1955 года было произведено около 225 кг трития[9].

В конце XX — начале XXI века наработка ведется на путём облучения TPBAR (англ. tritium-producing burnable absorber rods), планируется также использование АЭС Секвойя.

Переработку и выделение трития проводят на Tritium Extraction Facility, Саванна-Ривер[10].

В СССР и России тритий производился на реакторах АИ, АВ-3, ОК-180, ОК-190, РУСЛАН, Л-2; изотоп выделяется на заводе РТ-1 (ПО «Маяк»)[11][12].

Значительные количества трития (до 2,5—3,5 кг) для гражданских применений производит Канада на 21 тяжеловодном реакторе. Выделение изотопа — компания «Онтарио Хайдро», Дарлингтон[13].

Мировая коммерческая потребность в тритии на 1995 год составляет ежегодно около 400 г, и ещё порядка 2 кг требовалось для поддержания ядерного арсенала США[14] (7 кг для всех мировых военных потребителей). Около 4 кг трития в год образуется на АЭС, но не извлекается[15].

Большие количества трития потребуются для термоядерной энергетики: например, для запуска ITER потребуется как минимум около 3 кг трития, для запуска DEMO понадобится 4—10 кг[16]. Гипотетический тритиевый реактор потреблял бы 56 кг трития на производство 1 ГВт·года электроэнергии, тогда как всемирные запасы трития на 2003 год составляли всего 18 кг[16].

По словам Яна Беранека из организации «Гринпис», в 2010 году производство одного килограмма трития обходилось в 30 млн долларов[17].

Применение[ | ]

Тритиевый брелок, свечение в темноте (снимок с длительной экспозицией).

В 2012 году канадская фирма City Labs представила радиоизотопные генераторы электричества сверхмалой мощности на базе трития, способные питать различные микроэлектронные устройства, таких как RFID-метки, автономных датчиков, медицинские имплантаты. При цене порядка 1000 долларов срок службы генератора составляет около 20 лет[18].

Тритий используется в источниках подсветки в военных и гражданских приборах.

Примечания[ | ]

  1. ↑ 1234Audi G., Wapstra A. H., Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A. — 2003. — Vol. 729. — P. 337—676. — DOI:10.1016/j.nuclphysa.2003.11.003. — Bibcode: 2003NuPhA.729..337A.
  2. ↑ 123Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. — Т. 729. — С. 3—128. — DOI:10.1016/j.nuclphysa.2003.11.001. — Bibcode: 2003NuPhA.729….3A.
  3. ↑ http://energy.gov/sites/prod/files/2013/09/f2/hdbk1079.

    pdf

  4. ↑ Urey H. C., Murphy G. M., Brickwedde F. G. (1933). “A Name and Symbol for h3*”. The Journal of Chemical Physics. 1: 512—513. DOI:10.1063/1.1749325.
  5. ↑ Dan O'Leary (2012). “The deeds to deuterium”. Nature Chemistry. 4: 236. DOI:10.1038/nchem.1273.
  6. ↑ Nuclide safety data sheet: Hydrogen-3. ehso.emory.edu.
  7. ↑ Backgrounder on Tritium, Radiation Protection Limits, and Drinking Water Standards (англ.). U.S.NRC (February 2011). Проверено 5 октября 2012. Архивировано 14 октября 2012 года.
  8. ↑ R. V. Osborne. Review of the Greenpeace report: «Tritium Hazard Report: Pollution and Radiation Risk from Canadian Nuclear Facilities» (англ.) (pdf).

    Canadian Nuclear Association (August 2007). Проверено 5 октября 2012. Архивировано 14 октября 2012 года.

  9. ↑ Hisham Zerriffi. Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy's decision to produce tritium (англ.). Institute for Energy and Environmental Research (англ.) (January 1996).

    Проверено 15 сентября 2010. полный текст

  10. ↑ Михаил Сторожевой. Третируемый тритий. ATOMINFO.RU (28 октября 2010). Проверено 13 ноября 2013.
  11. ↑ Производство плутония и трития для ядерного оружия. Стратегическое ядерное вооружение СССР и России. Проверено 13 ноября 2013.
  12. ↑ Бекман. 6. РЕАКТОРЫ ДЛЯ НАРАБОТКИ ТРИТИЯ.

    Проверено 13 ноября 2013.

  13. ↑ Martin В. Kalinowski, Lars С. Colschen International Control of Tritium to Prevent Horizontal Proliferation and to Foster Nuclear Disarmament // Science & Global Security, 1994, vol. 5, рр. 131—203
  14. ↑ Hisham Zerriffi. Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy’s decision to produce tritium (англ.). Institute for Energy and Environmental Research (1996). Проверено 13 ноября 2013.
  15. ↑ International Control of Tritium for Nuclear Nonproliferation and Disarmament, CRC Press, 2004, page 15
  16. ↑ 12 Tritium Supply Considerations, LANL, 2003. «ITER startup inventory estimated to be ~3 Kg»
  17. ↑ Alasdair Cros. Is fusion power really viable? (англ.) (5 March 2010). Проверено 19 января 2019.

    BBC News — Is fusion power really viable?

  18. ↑ Незаменимые батарейки: Сила трития. Журнал «Популярная Механика» (27 августа 2012). — «Размерами с фалангу пальца, они используют радиоактивный распад для производства электричества – в небольших количествах, зато непрерывно в течение минимум лет двадцати. … цена остается пока на уровне 1000 долларов». Проверено 13 ноября 2013.

Ссылки[ | ]

  • ТРИТИЙ — химическая энциклопедия
  • ТРИТИЙ — справочник по веществам

Источник: https://encyclopaedia.bid/%D0%B2%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F/%D0%A2%D1%80%D0%B8%D1%82%D0%B8%D0%B9

Поделиться:

Нет комментариев

himya.ru

Тритий - это... Что такое Тритий?

Три́тий (др.-греч. τρίτος «третий»), сверхтяжёлый водород, обозначается символами T и 3H — радиоактивный изотоп водорода. Ядро трития состоит из протона и двух нейтронов, его называют тритоном и обозначают t.

В природе тритий образуется в верхних слоях атмосферы при соударении частиц космического излучения с ядрами атомов, например, азота. В процессе распада тритий превращается в 3He с испусканием электрона и антинейтрино (бета-распад), период полураспада — 12,32 года. Доступная энергия распада очень мала (18,59 кэВ), средняя энергия электронов 6,5 кэВ.

Тритий открыт английскими учёными Эрнестом Резерфордом, Маркусом Олифантом и Паулем Хартеком в 1934 году. Используется в биологии и химии как радиоактивная метка, в экспериментах по исследованию свойств нейтрино, в термоядерном оружии как источник нейтронов и одновременно термоядерное горючее, в геологии для датирования природных вод. Промышленный тритий получают облучением лития-6 нейтронами в ядерных реакторах по следующей реакции:

.

Радиационная опасность трития

В силу малой энергии распада трития, испускаемые электроны хорошо задерживаются даже простейшими преградами типа одежды или резиновых хирургических перчаток. Тем не менее, этот изотоп представляет радиационную опасность при вдыхании, поглощении с пищей, впитывании через кожу. Единичный случай употребления тритиевой воды не приводит к длительному накоплению трития в организме, так как его период полувыведения — от 7 до 14 дней[3][4].

Интересные факты

Тритиевый брелок фирмы Nite
  • Производство одного килограмма трития обходится в 30 млн долларов[5].
  • Используется в источниках света.

Примечания

  • ТРИТИЙ — химическая энциклопедия
  • ТРИТИЙ — справочник по веществам

dic.academic.ru

ТРИТИЙ

АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ

ТРИТИЙ (от греч. tritos - третий) T, или 31H, радиоактивный тяжелый изотоп водорода с мас. ч. 3. Ядро атома трития- тритон с массой 3,016050 состоит из одного протона и двух нейтронов, энергия связи 8,1-8,4 МэВ. При b-распаде трития образуется легкий изотоп гелия: Т1/2 12,33 года; макс. энергия излучения 18,61 кэВ, средняя - 5,54 кэВ. Уд. активность трития 3,59 · 105 ГБк/г. При взаимод.-частиц трития с в-вом возникает тормозное фотонное излучение, к-рое используют для количеств. определения трития в разл. средах.

Молекула трития двухатомна, мол. м. 6,03210; основная частота колебаний атомов 2548,36 см-1; константа диссоциации (293,15 К), где p - давление. С др. изотопами водорода тритий образует молекулы прототри-тия HT с мол.м. 4,02395 и дейтеротрития DT с мол. м. 5,03015. Молекулярный тритий может находиться в орто-и пара-состояниях (соотв. о-Т2 и п-Т2). При обычных условиях газообразный T2 представляет собой смесь 75% орто- и 25% пара-модификаций (нормальный тритий, н-T2). Равновесный тритий (р-Т2), имеющий равновесный орто-пара-состав при данной т-ре, содержит п-T2, (%): 97,243 (10 К), 66,453 (20 К), 43,493 (30 К), 33,35 (40 К), 28,789 (50 К), 25,075 (100 К). Энтальпия орто-пара-превращения н-T2 в р-Т2 составляет -195,94 при 20 К и -11,51 Дж/моль при 50 К.

Тритий образуется в верх. слоях атмосферы в результате взаимод. космич. излучения гл. обр. с ядрами N и O, напр.: . Образующиеся таким образом атомы трития в результате р-ций радиац. окисления и изотопного обмена переходят в молекулы воды, затем тритий в составе дождевой воды выпадает на пов-сть Земли. По совр. оценкам, равновесная активность космогенного трития во внеш. среде (гидросфере и атмосфере) составляет (1,11-1,30)·109 ГБк (3,0-3,5 кг). Считают, что ок. 90% природного трития содержится в гидросфере (гл. обр. в виде НТО), 10% в стратосфере (НТО) и 0,1% и тропосфере (из них 50% в виде HT).

Большое кол-во трития образуется при ядерных и, гл. обр., термоядерных взрывах. Взрыв водородной бомбы с тротиловым эквивалентом 1 MT приводит к выделению (2,6-7,4)*108 ГБк трития. С начала испытания термоядерного оружия (1954) содержание трития в дождевой воде возросло с 0,5-5,0 до 500 Т.E.: Т.E. - тритиевая единица, равная отношению числа атомов Т/Н = 10-18, или 0,12 Бк на 1 л воды. При подземных ядерных взрывах тритий также превращ. в оксид и частично выходит на пов-cть. По оценкам (1970), общее содержание трития в биосфере: в мировом океане 250 кг, в континентальных водах 45 кг, в воздухе 3 кг.

Свойства. Нек-рые св-ва трития приведены в табл. 1. Ур-ние температурной зависимости давления насыщ. пара жидкого н-Т2 в интервале 25-40 К: (гПа) = 6,158 +78,925/T+2*10-4(T-25)2.

Tабл. 1. - СВОЙСТВА HT, DT и н-Т2

МПа

AHисп при т. кип., Дж/моль

Плотн. жидкости (кг/м3) вдоль линии насыщения:

Давление пара HT м. б. вычислено по ф-ле: аналогично принято, что Коэф. диффузии HT в жидком h3 м.б. вычислен по ур-нию D = 3,05*10-4exp(-36/T). Идеальный коэф. разделения изотопов водорода при равновесии жидкость-пар(см. табл. 2). Эксперим. коэф. разделения смесей D2-DT и D2-T2 на 5-6% ниже Р-ции изотопного обмена водорода и (константы равновесия при 298,15 К равны соотв. 2,57 и 3,82) протекают вследствие выделения энергии при радиоактивном распаде трития, скорость их зависит от концентрации трития, а также от присутствия катализаторов. Тритий окисляется O2 при обычной т-ре и без катализаторов вследствие-распада.

Табл.2.- ЗНАЧЕНИЯ

Оксиды трития T2O (мол.м. 22,03150), прототрития НТО (20,02335) и дейтеротрития DTO (21,02955) имеют уд. активность соотв. 98050, 53650 и 51430 ГБк/г. Для T2O т. кип. 274,70 К, т-ра тройной точки 277,64 К; плотн. 1,21459 г/см3 (293,15 К), макс. плотн. 1,21502 (286,55 К); отношение значений давления паров h3O и T2O в интервале 264-387 К: = -103,87/Т+ 46480/Т2.

Давление пара НТО Коэф. разделения жидкость - пар (относит, летучесть ) р-ров DTO в D2О в интервале 313,15-373,15 К: =8,026/7+0,0198. Коэф. диффузии (м2/с) при 298,15 К: НТО в h3O 2,236-10-9, DTO в D2O 1,849*10-9, DTO в НТО 2,029*10-9.

Константы равновесия К изотопного обмена h3O+ и D2O + при 300 К соотв. равны 3,699 и 3,972. Образование НТО может происходить при изотопном обмене , К = 6.31 (300 К).

В результате радиоактивного распада трития в его соед. имеют место радиац. эффекты. Вода, содержащая тритий, подвергается радиолизу с образованием h3 и h3O2. Вода, содержащая 100% трития, разлагается на 50% через 5,24 сут. Рекомендуемая Международной комиссией радиологич. зашиты условная граница допустимого содержания трития в воде (при к-ром практически не наблюдается ее саморазложение) 3,7*103 ГБк/л.

Тритиды подобны гидридам (незначит. отличия проявляются в таких св-вах, как плотность и параметры кристаллич.решетки): получают их теми же методами, что и гидриды. Наиб. важны LiT (Li2DT), TiT2, ZrT2, UT3. Обьем (см3) T2, связываемого 1 г металла: Li 1,6*103, Ti 4,7*102, Zr2,5-102, U 1,4*102. В любом водородсодержащем соед. замещение одного атома H на атом T приводит к образованию соед. с уд. активностью 107,7-104 ГБк/моль.

Получение. В пром. масштабе тритий получают в ядерном реакторе, облучая Li, чаще всею обогащенный изотопом 6Li, нейтронами: . Продукт естеств. распада трития- 3Не - также вступает в ядерную р-цию, превращаясь в тритий и протий: . Получение трития включает подготовку материала к облучению, проведение облучения и накопление трития в материале, выделение, очистку и концентрирование, при этом используют методы термодиффузии и низкотемпературной ректификации. Тритий может быть также получен выделением и концентрированием при изотопной очистке тяжелой воды - замедлителя ядерных реакторов. Этим путем на установке в Гренобле (Франция) получают 8,88-106 ГБк в год 98%-ного трития. Установка TRF (Tritium Removal Facility) в Канаде, рассчитанная на переработку 350 кг/ч D2O тяжеловодных реакторов, по аналогичной технологии позволяет получать ок. 109 ГБк в год трития чистотой не менее 99%. Хранить тритий можно в виде тритидов.

Применение. Тритий- компонент топлива для термоядерного синтеза: МэВ: радиоактивный изотопный индикатор в химии, биологии, медицине, геофизике, гидрогеологии и др. В виде тритиевых мишеней (тритиды U, Ti, Zr, интерметаллиды) используется в генераторах нейтронов, детекторах для газо-жидкостной хроматографии, в качестве радиоактивных источников излучения для флюорографии, в толщиномерах и т.д. Тритий применяют при изготовлении световых указателей и сигналов (активированный ZnS излучает зеленоватое свечение в присутствии трития).

Техника безопасности и контроль. Макс. пробег-частиц трития в воздухе 5,8 мм при 20 0C, в биол. ткани 6,5 мкм. Поэтому -частицы трития полностью поглощаются роговыми слоями кожи и внеш. облучение организма тритием и его соед. не представляет опасности. Тритий опасен при попадании в организм через кожу, легкие или при приеме пищи и воды. Период полувыведения трития при поглощении в виде газа 3,3 мин, а в виде воды 10-12 сут. Независимо от путей поступления в организм через 2-3 ч наблюдается равномерное распределение НТО в жидкой фазе организма (кровь, моча, выдыхаемые пары воды). Для газообразного трития и НТО (T2O) категория радиац. опасности Г, минимально значимая активность 3,7 · 106 Бк. Допустимые концентрации трития в воздухе рабочей зоны ДКА и в атм. воздухе или воде ДКБ, предельно допустимое поступление через органы дыхания ПДП, предел годового поступления в организм ПГП приведены в табл. 3.

В ядерных реакторах, работающих на тепловых нейтронах, в результате побочных процессов образуется тритий, к-рый может попадать в окружающую среду с газообразными или жидкими отходами, как непосредственно на АЭС, так и при дальнейшей переработке облученного ядерного топлива. Количеств. оценка поступления трития в окружающую среду с газообразными и жидкими отходами АЭС, ГБк/МВт(электрич.)*год: реакторы ВВЭР (водно-водяной энергетич. реактор) - в атмосферу 7,4-33, в гидросферу 33; реакторы РБМК (реактор большой мощности канальный) - соотв. 22 и 1,5. Существенно более высокие выбросы трития наблюдаются на АЭС с тяжеловодными реакторами. Осн. источник поступления трития в окружающую среду в ядерной технологии - заводы по переработке ядерного топлива. Так, напр., завод по переработке ядерного топлива с производительностью 1500 т UO2 в год м.б. источником трития- (1,11-2,96)·1016 Бк в год.

Табл. 3.- ЗНАЧЕНИЯ ДОПУСТИМЫХ КОНЦЕНТРАЦИЙ ТРИТИЯ

ПДП, Бк/год через органы дыхания

Эксплуатация термоядерных энергетич. установок будущего приведет к дальнейшему росту выбросов трития, т.к. ТЯЭС (термоядерная энергетич. станция) по оценкам будет выделять трития в 104-106 раз больше, чем АЭС эквивалентной мощности. Задачи улавливания трития и очистки сбросов до санитарных норм, выделения и концентрирования трития с целью его локализации (захоронения) или использования м. б. решены при помощи методов разделения изотопов водорода: ректификацией воды под вакуумом, хим. изотопным обменом (очистка и начальное концентрирование), низкотемпературной ректификацией жидкого водорода, сорбционным разделением на твердых сорбентах. Содержание трития в разл. средах определяют измерением его активности чаще всего ионизационными и сцинтилляционными методами (табл. 4). При недостаточной чувствительности измерит, аппаратуры применяют методы предварит, концентрирования (термодиффузия, ректификация, электролиз).

Табл. 4.- ХАРАКТЕРИСТИКА НАИБОЛЕЕ УПОТРЕБЛЯЕМЫХ МЕТОДОВ ОПРЕДЕЛЕНИЯ ТРИТИЯ

Миним. детектируемая активность трития, Бк

Пределы измерения концентрации трития в воде, Бк/л

Жидкостной сцинтилляц. счетчик совпадений

Для контроля за содержанием трития в воздухе используют ионизац. камеры [диапазон измеряемых концентраций 3,7·(10-1013) Бк/л], пропорциональные (1,85-3,7·106 Бк/л) и сцинтилляц. счетчики [3,7·(10-1O7) Бк/л], для периодич. контроля - фотопленки. Тритий открыли в 1934 Э. Резерфорд, M. Олифант и П. Хартек.

Лит.: Ленский Л. А., Физика и химия трития, M., 1981; Беловодский Л.Ф., Гаевой В. К., Гришмановский В. И., Тритий, M., 1985; Андреев Б. M., Зельвенский Я.Д., Катальников С.Г., Тяжелые изотопы водорода в ядерной технике, M., 1987; Вредные химические вещества. Радиоактивные вещества. Справочник, под ред. Л. А. Ильина, В. А. Филова, Л., 1990, с. 50-57. Я. Д. Зельвенский.

АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ

Еще по теме:

  • Тритий - справочник по веществам

www.xumuk.ru

Тритий. Что это? Вечны ли такие часы?

Тритий — сверхтяжёлый водород, обозначается символами T и h4 — радиоактивный изотоп водорода. Ядро трития состоит из протона и двух нейтронов, его называют тритоном и обозначают t.

В природе тритий образуется в верхних слоях атмосферы при соударении частиц космического излучения с ядрами атомов, например, азота. В процессе распада тритий превращается в 3He с испусканием электрона и антинейтрино (бета-распад), период полураспада — 12,32 года. Доступная энергия распада очень мала (18,59 кэВ), средняя энергия электронов 6,5 кэВ.

Тритий используется в биологии и химии как радиоактивная метка, в экспериментах по исследованию свойств нейтрино, в термоядерном оружии (оно же водородная бомба) как источник нейтронов и одновременно термоядерное горючее, в геологии для датирования природных вод. Промышленный тритий получают облучением лития-6 нейтронами в ядерных реакторах.

В силу малой энергии распада трития, испускаемые электроны хорошо задерживаются даже простейшими преградами типа одежды или резиновых хирургических перчаток. Тем не менее, этот изотоп представляет радиационную опасность при вдыхании, поглощении с пищей, впитывании через кожу. Единичный случай употребления тритиевой воды не приводит к длительному накоплению трития в организме, так как его период полувыведения — от 7 до 14 дней.

Использование в часах

Что касается использования в часах, то поначалу использовался радий (отсюда — Radiomir). После того, как было установлено, что радий для этих целей использовать крайне вредно для здоровья, часовая промышленность перешла на тритий (а, кроме того, на нерадиоактивные составы, такие как SuperLumiNova). В связи с радиоактивностью радия даже, например, была отправлена на дно океана партия Panerai Radiomir.

Тритий гораздо более безопасен, но для работы с тритием компании требуется специальное разрешение и подготовленные мастера.

В конце 90-х Суперлюминова начала активно вытеснять тритий. Это связано с меньшими трудностями при производстве и экологичности, хотя данный состав уступает по свечению (продолжительности) тритию. Правда, у трития есть важный недостаток, помимо минимальной радиоактивности. Это — ограниченный период работы в связи с полураспадом. Такое свечение в часах продлится максимум 12 лет (12,34 года — период полураспада трития). Срок считается с момента производства трития! Через несколько лет интенсивность свечения снижается.

Нынешняя технология использования трития в часах довольно проста: берется стеклянный сосуд, его внутренные стенки покрываются светящимся веществом (люминофор, например Суперлюминова), затем сосуд наполняется газом трития и герметично закупоривается. Электроны, испускаемые тритием, проводят бомбардировку слоя со светящимся веществом, что и создает эффект свечения.

Излучение распадающегося трития имеет область распространения 1 – 3 миллиметра, что не позволяет им проникнуть в человеческое тело. Соответственно, излучение не проходит через стенки сосуда.

getat.ru

Тритиевые брелки и радиация от них

Популярные тритиевые брелки вызывают множество споров: кто-то в восторге от ярких, компактных и «вечно» светящихся изделий, а кто-то говорит об их радиоактивности и опасности для здоровья. Производители же уверены в безопасности своей продукции и предлагают тритиевые маркеры в качестве альтернативных источников света, не теряющих яркости свечения на протяжении 25лет. Кому же верить? Попробуем разобраться.

Что такое тритий?

Природный тритий (Т или Н-3) – сверхтяжелый радиоизотоп водорода с периодом полураспада 12,5 лет. Он постоянно образуется в атмосфере при взаимодействии нейтронов вторичного космического облучения с ядрами кислорода, азота или аргона. Изотоп быстро переходит в молекулы обычной воды, содержащейся в воздухе, а затем в виде дождей выпадает на землю. В биосфере его содержится чрезвычайно мало – не более 2 кг, причем большая часть (90%) радионуклида сконцентрирована в воде.

Техногенный тритий получают путем облучения нейронами изотопов лития-6 или урана и плутония в атомных реакторах. Эта технология отличается трудоемкостью и дороговизной – синтез 1 кг трития обходится в 30 миллионов долларов. Он может быть также выделен и концентрирован в процессе очистки тяжелой воды, используемой в атомных реакторах в качестве замедлителя.

Секрет свечения тритиевых брелоков

Свечение брелока обеспечивается подсветкой на основе газообразного трития, которая по своей яркости превосходит остальные светосоставы постоянного действия. Главный компонент светоэлемента – прозрачная запаянная трубочка из карбонатного стекла, изнутри покрытая люминесцирующим составом и заполненная газообразным тритием. Радионуклид испускает бета-электроны, которые бомбардируют люминофор и вызывают яркое свечение. Брелок способен равномерно светиться в течение 12 лет без подзарядки, поскольку период полураспада трития составляет 12,5 лет, а время полного разложения этого радиоактивного изотопа – 25 лет. То есть и спустя гарантированный срок брелоки будут светиться, далее интенсивность светового излучения трития падает, но не более чем на 40%.

Токсичность газообразного трития

Газообразный тритий – важный биологический радиоизотоп, испускающий слабое бета-излучение. Из-за малой длины пробега – не более 5,8 мм, бета-частицы трития разрушаются в воздухе или полностью задерживаются кожей человека. В большей степени изотоп опасен при попадании внутрь организма во время дыхания или приема пищи и еды. Излучаемые им электроны низкой энергии создают повышенную ионизацию вокруг себя, вызывая повреждение биологических тканей и органов. Негативное воздействие также оказывает тормозное рентгеновское излучение, которое возникает при торможении испускаемых тритием электронов в электростатистическом поле люминофора. И хоть оно ослабляется стеклом, но все же, дает излучение до 10 мкР/ч на расстоянии одного сантиметра.

Первые световые элементы на основе трития

Первой компанией, начавшей в 1918 году использовать тритиевый газ в качестве основы для люминесцентной краски, стала компания Mb-microtec AG (Швейцария).К сожалению, полученная тритиевая краска быстро разлагалась и вступала во взаимодействие с водой, образуя высокорадиоактивную тритиевую воду. После долгих поисков компания создала технологию GTLS и начала выпускать газовые тритиевые источники света под маркой Trigalight. Тригалайт представляет собой боросиликатную трубку диаметром 12 мм и длиной 1,5 метра. В процессе изготовления источников она вытягивается на специальном станке, разработанном и запатентованном специалистами компании. В результате получается до 120 полуметровых стекленных колбочек шириной 0,5 мм.

Каждая из них изнутри покрывается светоотражающей краской и заполняется тритиевым газом. Поскольку от его количества зависит яркость свечения и срок службы готового тригалайта, в емкости закачивается как можно больше газа. На заключительном этапе длинные трубки, заполненные тритием, разрезаются лазером на кусочки, концы при этом моментально запаиваются. После резки готовые тригалайты проверяются на герметичность оператором в темной комнате.

Ежегодно компания Mb-microtec AG выпускает до 10 миллионов тригалайтов разных размеров и цветов, которые используются для подсветки не только брелоков, но и информационных табличек, морских компасов, портативных фонариков, циферблатов и стрелок ручных часов. Тритиевая подсветка, размещенная на прицеле ручного огнестрельного оружия, решила проблему с точностью наведения, возникающую при ведении ночной стрельбы. Яркие тригалайты успешно используются ведущими производителями боевого оружия: Калашников, Kriss, Glock, Beretta.

Помимо компании Mb-microtec AG подобные источники света выпускаются канадской фирмой SRBT, ими оснащается подсветка коридоров коммерческих и военных самолетов.

Альтернативные тритиевые светосоставы Существуют другие источники постоянного света на основе трития. В таких светосоставах, формулы которых держатся производителями в секрете, он находится виде тритированных смол, жирных кислот или поверхностно-активных веществ, связанных с люминофором. Однако, самосветящиеся тритиевые краски не используются в тритиевых брелоках, поскольку они значительно уступают по яркости свечения тригалайту и более опасны в радиационном плане.

Тригалайт – безопасная люминесцентная альтернатива

Световые источники тригалайт фиксируются в изделиях таким образом, что при соблюдении термических и механических условий эксплуатации, становится маловероятной поломка капсулы и утечка газообразного трития. Многочисленные исследования подтвердили безопасность этих светоисточников вследствие малого размера капсул и прочного карбонатного стекла, а также их соответствие международному стандарту качества ISO 9001.

К сожалению, сегодня рынок наводнен дешевыми тритиевыми брелоками, сделанными в Китае. В них используются стеклянные капсулы, похожие на тригалайты, но дающие превышение радиационного фона в несколько раз. Специалисты предполагают, что китайские фабрики вместо трития используют другой, более дешевый газообразный изотоп, который испускает более сильное бета-излучение и негативно влияет на здоровье человека.

Тритиевый брелок: опасен или нет?

Тритий всегда присутствует в организме человека, поступая вместе с пищей, воздухом и через кожу. Находясь в газообразном состоянии, он не представляет большой опасности, посколькуобразующиеся при распаде трития бета-частицы обладают слабым проникающим действием и быстро поглощаются воздушным слоем толщиной 5 мм. Если он и попадает в легкие, то очень быстро, буквально за три минуты выводится из организма. Намного опасней для организма водный раствор трития.

Так называемая тритиевая вода в 500 раз токсичнее, чем газообразный радионуклид, поскольку задерживается в организме до десяти дней и успевает передать значительную дозу радиации органам и тканям. Внутреннее облучение еще опасно тем, что тритий легко замещает водород в белках, жирах и углеводах, проникая в протоплазму клетки. Образуемые им бета-частицы, хоть и отличаются малым пробегом, но способны повреждать генетический аппарат клетки и внутренние органы человека.

Интересный факт В среднем организм человека содержит 5х10-12грамм трития. Но у людей, носящих часы с циферблатом, покрытым тритиевым люминофором, эта норма превышена в 5 раз!

Чем измерить радиоактивное излучение тритиевого брелока?

Газообразный тритий действительно излучает слабое бета-излучение, которое способен уловить не каждый дозиметр. Для этого нужен прибор с чувствительным счетчиком Гейгера, например, дозиметр RADEX RD1008 или дозиметр-радиометр РАДЭКС МКС-1009. В данных приборах установлены счетчики Гейгера-Мюллера БЕТА-2 (с слюдяным окном) и БЕТА-2М.

www.quarta-rad.ru


Смотрите также