Сорбционная очистка воды что это такое


Что такое сорбционная очистка воды?

28 МАР 345

АКЦИЯ ЭТОГО МЕСЯЦА

Среди существующих методов водоочистки сорбционный способ является одним из самых распространенных. Что это такое сорбционная очистка воды, и для чего она нужна? Данная процедура относится к эффективным способам глубокой очистки жидкости, позволяющим убрать вредные примеси и химические соединения посредством связывания частиц на молекулярном уровне. Уникальность такой фильтрации состоит в возможности удалить из воды органику, не поддающуюся отделению другим образом.

Сорбционный метод очистки воды с использованием высокоактивных сорбентов позволяет получить жидкость, в которой почти нет остаточного концентрата. Высокая активность сорбентов делает возможным взаимодействие с веществами, независимо от их концентрации: даже при малых дозах вредных примесей этот способ будет работать.

Понятие адсорбции и ее эффективность

Термин «адсорбция» означает процесс поглощения загрязнителей в воде поверхностью твердых тел. В его основе лежит принцип пропускания молекул таких примесей через особую пленку, окружающую адсорбент, и их притягивание к его поверхности. Вышеназванный процесс происходит, если жидкость для очистки перемешивается.

Наибольшего эффекта такой способ позволяет добиться при малой концентрации вредных веществ, что наблюдается в случае сильной очистки. Все, что не осело на предыдущих фильтрах, удаляется сорбцией, при этом на выходе получается чистая вода.

Скорость процесса и его эффективность зависят от ряда факторов:

  • Структуры сорбента.
  • Температуры.
  • Концентрации загрязнителя и его состава.
  • Активности реакции среды.

При современных установках лучшим вариантом сорбента, эффективно очищающим воду, признается активированный уголь разных типов. Чем больше данное вещество имеет микропор, тем выше качество очистки воды методом угольной сорбции.

Специалисты компании «Русватер» помогут подобрать оптимальный вариант фильтрующих установок, работающих по принципу сорбции, что даст возможность организовать эффективную водоподготовку и очистку воды от различных примесей, независимо от ее назначения.

Фильтрация воды через активированный уголь должна исключать попадание на сорбент жидкости с растворенными взвесями и коллоидными частицами, так как они портят поверхность угля, экранируя его поры. Сорбент, пришедший в негодность из-за такого воздействия, восстанавливают либо меняют.

Для дехлорирования воды применяются сорбционные фильтры на основе активированного угля, делающие воду лучше, а также позволяющие очистить ее от азотистых включений. Совместное использование сорбции и озонирования в разы усиливает действенность очистки с одновременным повышением возможностей активированного угля. При использовании в роли сорбента природных минералов с Ca и Mg, а также окислов алюминия, из воды удаляются соединения фосфора.

Для чего нужна сорбция и где она используется?

Фильтрация воды углем с помощью сорбционных установок различного типа применяется для глубокой очистки жидкости в замкнутых системах, включая очистку канализационных стоков от органики.

Среди существующих методик тонкой очистки сорбция признается одним из наиболее эффективных способов, позволяющим удалить из воды органические вещества без значительных затрат. Технология пользуется популярностью в случаях необходимости очистить стоки от красителей, а также убрать иные гидрофобные соединения.

Данный способ не подходит, если в стоках присутствуют только неорганические загрязнители либо растворенная в них органика имеет низкомолекулярную структуру. Сорбция может применяться в комплексе с биологической очисткой или выступать самостоятельным средством.

Сорбционная очистка воды позволяет освободить жидкость от привкуса сероводорода и хлора и убрать неприятные запахи. Эффективность использования активированного угля в роли сорбента объясняется его структурой: фильтрацию выполняют имеющиеся микропоры. Получают активированный уголь из древесины, торфа, продуктов животного происхождения либо ореховых скорлупок. Нанесение на поверхность активированного угля частиц ионов серебра защищает материал от поражения разного рода микроорганизмами.

В большинстве случаев активированный уголь применяют для очистки воды от органики и для проведения процесса водоподготовки перед обратным осмосом. Сорбция позволяет эффективно убрать из воды хлор, улучшив ее качества. При этом таким методом хлор удаляется также для подготовки технической воды, применяемой для гигиенических целей.

Наши системы угольной очистки

Не менее востребованы сорбционные фильтры в общей системе обезжелезивания. Сорбционная очистка воды от железа необходима для удаления его твердых частиц после окисления до нерастворимых оксидов.

Системы сорбционной очистки могут быть разными. Выбор конкретного варианта происходит после проведения анализа воды и установления содержащихся в ней примесей. Такая работа должна проводиться профессионалами, поэтому наши специалисты всегда готовы помочь вам в этом.

www.ruswater.com

Сорбционная очистка воды

Сорбционная очистка воды – это высокоэффективный метод глубокого очищения. При сорбции устраняются вредные химические соединения и примеси за счет того, что частицы связываются между собой из-за силы молекулярного взаимодействия. Уникальность сорбционной очистки воды состоит в том, что с помощью сорбционных материалов можно очистить воду от таких органических веществ, которые не удалялись с помощью других методов. Благодаря очищению высокоактивными сорбентами обеспечивается выход воды с почти нулевыми остаточными концентрациями. Стоит также отметить, что высокоактивные сорбенты реагируют даже с теми веществами, которые содержатся в воде в малых концентрациях, когда остальные методы не работают. Кроме этого, существует ещё один вид сорбционной технологии: находясь в гетерогенной среде, происходит электрособция, если речь идет о воздействии внешних электрических полей.

С помощью сорбционной очистки воды устраняются различные запахи, привкусы хлорированных углеводородов и сероводорода. Сорбентами выступают пористые твердые материалы, эффективность которых определяется величиной поверхности взаимодействия. Сорбционной способностью материала называют емкость и определяют ее в зависимости от того, сколько загрязнителей, которые можно нейтрализовать с помощью данного количества сорбента.

В качестве сорбента чаще всего используют активированный уголь. Он особо эффективен за счет своей структуры: в нем присутствуют микропоры и субмикропоры, величина которых зависит от того, какой тип сырья выбран, а так же от процесса активации. В качестве основного сырья при получении активированного угля может быть: торф, древесина, скорлупа орехов и различные продукты животного происхождения. Если на активированный уголь нанести частицы иона серебра, то это предотвратит поражение сорбента различными микроорганизмами. Обычно использование активированного угля происходит для удаления многих органических веществ, для водоподготовки перед системами обратного осмоса, при сорбционной очистке питьевая вода очень эффективно дехлорируется. Устранение хлора надо проводить не только, если используется многоступенчатая фильтрация питьевой воды, но и если речь идет о подготовке технической воды, которая используется для гигиенических целей. Хотя хлор нашел свое широкое применение в качестве дезинфекции воды, но если хлор попадет в организм человека, это может пагубно воздействовать на жирные кислоты и нарушить обмен веществ. Поэтому лучше перестраховаться и дополнительно очистить воду от хлора с помощью сорбционной очистки воды.

ecoz.ru

Принцип работы сорбционного фильтра

Сорбционные фильтры — достаточно востребованные изделия для удаления разнообразных механических и хлорорганических примесей  путём поглощения загрязнителя внутренней поверхностью зерна загрузки.

О выборе и установке сорбционных фильтров пойдет речь в этой статье.

Что такое адсорбция

Термином «адсорбция» именуется процесс поглощения загрязнения жидкости поверхностным слоем твёрдого тела. Он основан на диффузии молекул загрязняющих веществ через специальную жидкостную плёнку, которая окружает частицы адсорбента, к поверхности последнего, которая происходит при перемешивании очищаемой жидкости.

Затем диффузия продолжается со скоростью, определяемой строением применяемого адсорбента и величинами молекул собираемых веществ.

Данный процесс наиболее эффективен в тех случаях, когда жидкость имеет низкую концентрацию загрязняющих веществ (на стадии глубокой очистки). В таких случаях эффективность процесса позволяет получить на выходе практически нулевую концентрацию загрязняющих веществ.

Эффективность и скорость адсорбции прямо зависит от:

  • структуры сорбента;
  • концентрации загрязняющих веществ и их химической природы;
  • активной реакции среды;
  • температуры.

На сегодняшний день лучшими сорбентами, предназначенными для очистки воды, считаются активированные угли разных марок. Эффективность последних определяется наличием микропор. Суммарный их объём является основной характеристикой и указывается для каждой марки.

При сорбционном процессе должно быть исключено попадание на уголь воды, в которой растворены коллоидные и взвешенные вещества, т.к. они экранируют поры активированного угля. Уголь, потерявший способность к сорбции, заменяют, либо регенерируют.

Добавление озона или хлора (окислителя) до того, как вода поступит на фильтр, увеличивает срок эксплуатации активированного угля до замены, улучшает качество воды на выходе и очищает её от имевшихся соединений азота.

Совместное выполнение озонирования и сорбции позволяет добиться синергетического эффекта, что почти в 3 раза повышает возможности активированного угля.

Если сорбция происходит после предварительно выполненного хлорирования, то из очищаемой жидкости удаляется аммонийный азот.

Если в качестве сорбентов применяются содержащие Mg и Са минералы природного происхождения, либо оксиды алюминия, из воды весьма эффективно удаляются соединения фосфора.

Назначение и область применения

Сорбционные фильтры различных марок используются для осуществления глубокой очистки воды в системах замкнутого водоснабжения, а также для очистки от органических загрязнителей (включая биологически жёсткие) сточных вод.

Очистка с использованием процесса сорбции считается одним из самых эффективных методов проведения тонкой очистки этих вод от загрязнений органического происхождения.

Наиболее эффективна технология при выполнении очистки стоков от красителей, гидрофобных и ароматических соединений группы алифатических, слабых электролитов и т.п.

Метод сорбции не используется для очистки стоков, загрязнённых исключительно веществами неорганического происхождения, либо органическими низкомолекулярными (альдегиды, спирты).

Технологии сорбционной очистки используются как самостоятельно, таки и в блоке с очисткой биологической на этапе глубокой предварительной доочистки.

Классификация установок сорбционной очистки

По типу процесса:

По гидродинамическому режиму:

  • установки промежуточного типа.

По состоянию слоёв сорбента:

По направлению фильтрации:

По контакту взаимодействующих фаз:

По конструкции фильтра:

Конструкция сорбционного фильтра

Сорбционный фильтр состоит из:

  • корпуса, представляющего собой баллон из стеклопластика необходимых размеров;
  • неподвижного слоя из активированного угля, имеющего гравийную подсыпку;
  • управляющего клапана разных типов (вариант – задвижки механической);
  • трубопровода, по которому подаётся сточная вода;
  • трубопровода, по которому отводится вода очищенная;
  • трубопровода, по которому подаётся вода взрыхляющая;
  • дренажно-распределительной системы.

Линейная скорость выполнения фильтрации зависит во многом от степени загрязнения воды, подаваемой на очистку. Её значение может составлять от 1 до 10 м3/час. Размеры зерна сорбента колеблются от 1 до 5 мм.

Наиболее оптимальным вариантом очистки считается фильтрация, в процессе проведения которой жидкость подаётся снизу вверх. При этом равномерно заполняется вся площадь сечения фильтра, а поступившие с водой пузырьки воздуха вытесняются достаточно легко.

Фильтры, имеющие неподвижный слой сорбентов, применяются для регенеративной очистки стоков с одновременным решением задач утилизации имеющихся в них ценных компонентов. Десорбция выполняется с использованием химических растворителей либо водяного пара.

Принцип работы

Рассмотрим принцип работы сорбционного фильтра на примере модели серии ФСБ, используемого в технологических схемах ливневой канализации. Непосредственно на его входе монтируется пескоулавливатель и нефтеулавливатель, что позволяет снизить показатели по указанным типам загрязнений до разрешённых концентраций.

Вода, пройдя описанный выше предфильтр, поступает по подводящей трубе в сорбционный блок. Отсюда, через распределительно-разгрузочную трубу, вода перемещается в нижнюю распределительную зону.

Здесь она равномерно распределяется по всей площади заложенного сорбента, марка и объёмы которого зависят от начальной и конечной концентрации загрязняющих веществ и требуемой производительности. П

осле этого вода восходящим потоком направляется в сборный круговой лоток, а оттуда отводится через патрубок.

Монтаж сорбционного фильтра

Процесс монтажа:

  • выкапывается котлован требуемых размеров;
  • дно просыпается песком, слой которого достигает толщины 300мм, затем тщательно трамбуется;
  • по этой подушке заливается железобетонная плита (300мм и более), геометрические размеры которой определяются величиной «диаметр корпуса фильтра + 1000мм»;
  • на плиту строго вертикально монтируется корпус сорбционного блока доочистки;
  • для устойчивости в корпус предварительно заливается вода  примерно до уровня перфорированного днища;
  • чтобы избежать сдвига корпуса при обратной засыпке, его предварительно крепят анкерами;
  • слоями по 300мм котлован засыпается песком без камней, с тщательной трамбовкой каждого слоя. Подсыпка завершается после достижения уровня выходного и входного патрубков;
  • подключаются трубопроводы (переливной, отводящий, подводящий). Далее процесс засыпки продолжается до верха корпуса фильтра. Необходимо контролировать работу вибратором в местах подсоединения трубопроводов, упомянутых выше, чтобы не повредить их;
  • загрузка подаётся внутрь корпуса мешками. Причём следующий подаётся после равномерного распределения содержимого предыдущего по всей поверхности перфорированного днища;
  • до момента ввода в эксплуатацию уложенную загрузку требуется тщательно отмыть.

Корпус в обязательном порядке необходимо заполнить загрузкой и чистой водой.

Чтобы выбранный вами сорбционный фильтр удалял максимально возможное количество типов загрязняющих веществ, к угольному фильтру в обязательном порядке следует добавлять различные ионообменные вещества, перечень которых определяется с учётом приоритетных загрязнителей на вашем предприятии (участке).

1 Комментарий

oskada.ru

Сорбционная очистка

Содержание

Введение …………………………………………………………………………

4

1 Основы теории сорбции ……………………………………………………….

5

2 Сорбционные установки ……………………………………………………...

10

3 Сорбционная очистка активным углем ………………………………………

17

4 Расчет адсорбционной установки ……………………………………………

29

4.1 Методика расчета ……………………………………………………………

29

4.2 Расчет адсорбционной установки ………………………………………….

31

Заключение ………………………………………………………………………..

32

Список использованных источников ……………………………………………

34

Введение

Неуклонный рост водопотребления, связанный с увеличением численности населения и развитием промышленности, вызывает необходимость использования воды из источников, содержащей повышенное количество примесей, что сопряжено с обязательной глубокой предварительной очисткой ее. Особое внимание уделяется подготовке питьевой воды, так как обязательное высокое качество питьевой воды не ставится в зависимость от методов ее обработки. Сорбционную обработку природной воды используют для удаления окрашенных, летучих и токсичных соединений, высокомолекулярных органических веществ естественного и искусственного происхождения.

На сегодняшний день идентифицировано более 700 органических соединений в природных водах, но они составляют лишь 10-20 % от общего количества примесей. Изменение органолептических свойств природных вод возникает и в результате их загрязнения недостаточно очищенными бытовыми и особенно производственными сточными водами, поступающими в поверхностные водоисточники и реже в подземные горизонты. Обработка воды сорбентами из-за универсальности действия является одним из наиболее перспективных методов дезодорации и обесцвечивания воды /1/.

1 Основы теории сорбции

Сорбционная очистка представляет собой процесс поглощения загрязняющих веществ из воды твердыми веществами – сорбентами. Поверхность частиц дисперсной фазы обладает свободной энергией, существование которой можно объяснить следующим образом. Молекулы, атомы или ионы, находящиеся на поверхности раздела фаз, не равноценны тем же молекулам, атомам и ионам, находящимся внутри каждой фазы. Внутри фазы молекулы окружены себе подобными и их силовое поле насыщено симметрично. Поле молекул, лежащих на поверхности, асимметрично: часть его находится вне фазы и не насыщена. Эта ненасыщенность и является источником свободной энергии /2/.

Различают поглощение вещества всей массой жидкого сорбента (абсорбция) и поверхностным слоем твердого или жидкого сорбента (адсорбция). Сорбция, сопровождающаяся химическим взаимодействием сорбента с поглощаемым веществом, называется хемосорбцией.

Сорбция представляет собой один из наиболее эффективных методов глубокой очистки от растворенных органических веществ сточных вод предприятий целлюлозно-бумажной, химической, нефтехимической, текстильной и других отраслей промышленности.

Сорбционная очистка может применяться самостоятельно и совместно с биологической очисткой как метод предварительной и глубокой очистки. Преимуществами этого метода являются возможность адсорбции веществ многокомпонентных смесей, и, кроме того, высокая эффективность очистки, особенно слабоконцентрированных сточных вод. Сорбционные методы весьма эффективны для извлечения из сточных вод ценных растворенных веществ с их последующей утилизацией и использования очищенных сточных вод в системе оборотного водоснабжения промышленных предприятий /3/.

Под действием поверхностных сил происходит изменение концентрации компонентов в поверхностном слое по сравнению с объемной фазой, т.е. протекает процесс адсорбции (сорбции). Адсорбция может быть положительной, если энергия взаимодействия растворенного вещества с молекулами, находящимися на поверхности адсорбента, выше, чем с молекулами растворителя, и отрицательной, когда наблюдается обратное явление. В случае неэлектролитов сорбируются молекулы вещества, в случае электролитов – их ионы. В процессах очистки природных вод важное значение имеют молекулярная, и ионная сорбции.

Помимо своей главной задачи – извлечения из воды нежелательных примесей – адсорбирующее вещество (адсорбент) выполняет функции катализатора, так как молекулярные и ионные реакции на поверхности раздела протекают обычно значительно быстрее, чем в объеме среды. Это объясняется увеличением концентраций молекул и ионов, их ориентацией, ослаблением связей между отдельными атомами /2/.

Сорбционная очистка сточных вод наиболее рациональна, если в них содержатся преимущественно ароматические соединения, неэлектролиты или слабые электролиты, красители, непредельные соединения или гидрофобные (например, содержащие хлор или нитрогруппы) алифатические соединения. При содержании в сточных водах только неорганических соединений, а также низших одноатомных спиртов этот метод не применим /3/.

Различают два основных вида адсорбции: физическую и химическую. К силам, обусловливающим физическую адсорбцию, относят молекулярные взаимодействия:

- молекул с постоянным диполем (ориентационный эффект);

- молекул с индуцированным диполем (индукционный эффект);

- неполярных молекул (дисперсионный эффект);

- силы, обусловливающие водородную связь.

Физическая адсорбция протекает самопроизвольно и всегда обратима. Количество вещества, адсорбированного на данном участке поверхности в данный момент времени, определяется не только перечисленными силами взаимодействия, но и силами десорбции, возникающими в результате теплового движения частиц. Причем для каждой концентрации адсорбирующего вещества (адсорбтива) и для каждой температуры среды существует состояние адсорбционного равновесия.

Силы, обусловливающие химическую адсорбцию (хемосорбцию), - специфически валентные. В отличие от физической адсорбции хемосорбция обычно необратима. С повышением температуры среды хемосорбция, требующая значительной энергии активации, возрастает. Соединения, образующиеся при хемосорбции на поверхности раздела фаз, нельзя рассматривать как новое вещество, так как, несмотря на возникновение химических связей, поверхностные атомы адсорбента продолжают сохранять связь с остальными его атомами.

Провести резкую границу между физической и химической адсорбцией во многих случаях довольно трудно: адсорбция одних и тех же веществ на одном и том же адсорбенте в одних условиях может иметь физический, в других – химический характер. В частности, повышение температуры снижает физическую, но увеличивает химическую адсорбцию.

Количество адсорбированного вещества выражают по отношению к 1 см2 поверхности адсорбента или к 1 г адсорбента. В первом случае это количество обозначается Г (моль/ см2), во втором – Г (моль/г).

К настоящему времени предложено множество различных теорий адсорбции. Отметим лишь, что ни одна из существующих теорий не является универсальной вследствие специфического характера адсорбции в разных условиях. Для решения практических задач, связанных с очисткой воды от дисперсных и истинно растворенных примесей, вполне достаточно воспользоваться представлениями Лэнгмюра о мономолекулярной адсорбции, сохраняющими свое значение до настоящего времени.

В своей теории, развитой еще в 1915 г., Лэнгмюр исходил из следующих предположений:

- адсорбция происходит не на всей поверхности сорбента, а лишь на отдельных ее активных участках-ребрах, выступах;

- каждый активный участок, адсорбируя молекулу адсорбтива, становится уже не способным к дальнейшей адсорбции. Таким образом, на поверхности адсорбента образуется лишь мономолекулярный слой адсорбтива;

- адсорбированные молекулы удерживаются на активных участках только в течение определенного времени. В результате флуктуации (непрерывного колебания) энергии молекулы могут оторваться от этих участков, и их место занимают новые молекулы;

- взаимодействием между адсорбированными молекулами можно пренебречь.

На степень адсорбции сильное влияние оказывают свойства адсорбента, адсорбтива и среды и, в частности, интенсивность поля действующих молекулярных сил – полярность. В качестве количественной характеристики полярности твердых частиц, погруженных в жидкость, используют величину удельной свободной энергии на поверхности частиц – поверхностное натяжение.

В соответствии с правилом Ребиндера адсорбция вещества будет происходить, если полярность их лежит между полярностью среды и адсорбента. Следовательно, чем больше разность полярностей между растворяемым веществом и раствором, т.е. чем менее растворимо вещество, тем лучше оно будет адсорбироваться. Действительно, неполярные гидрофобные вещества (в частности, активный уголь) хорошо адсорбируют поверхностноактивные вещества, что широко используется в водоподготовке. С увеличением молекулярного веса адсорбтива адсорбция возрастает. Этим объясняется в частности, хорошая адсорбция красителей.

Вещества пористые и с шероховатой поверхностью адсорбируют сильнее. Поэтому аморфные адсорбенты всегда эффективнее кристаллических. Чем уже поры адсорбента и чем крупнее молекулы адсорбтива, тем меньше и медленнее адсорбция. Для компенсации недостаточной скорости диффузии и ускорения наступления адсорбционного равновесия часто применяют перемешивание жидкости. Адсорбция электролитов, имеющая наиболее важное значение в водных растворах, резко отличается от молекулярной адсорбции. Участки поверхности адсорбента, несущие заряд, как правило, адсорбируют противоположно заряженные ионы, а из ионов разной валентности сильнее адсорбируются многовалентные. Сказывается и влияние природы ионов. Так, из ионов одинаковой валентности лучше адсорбируются ионы большего радиуса: они сильнее поляризуются и обладают меньшей гидратацией, что увеличивает силы их притяжения к поверхности. По способности адсорбироваться ионы могут быть расположены в следующие ряды, называемые лиотропными:

Анионы < < < < < < …

15-20 г/дм3 (по ХПК)) характеризуется нелинейными изотермами сорбции, т.е. можно говорить о достижении максимально возможной емкости сорбентов. Более того, при очистке сточных вод от высокомолекулярных соединений при                       С0 = 20–70 г/дм3 (по ХПК) увеличение дозы АУ не всегда приводит к повышению эффекта очистки воды сверх 50 %, хотя разбавление этих растворов в 10 раз увеличивают глубину извлечения этих же примесей до 82 %. Лишь некоторые ПАВ и полупродукты их синтеза из высококонцентрированных растворов, содержащие ароматические кольца, сорбируются на АУ в больших количествах. Так, керосин и бензол сорбируются на угле КАД-иодный в количестве 0,7-1,4 г/г при равновесных его концентрациях 2,1-15,1 г/дм3.

Сорбцию на АУ можно использовать в качестве предварительной обработки высококонцентрированных сточных вод перед дальнейшей их БХО и реже перед ФХО. В этом случае из сточных вод хотят выделить биологически неокисляемые или токсичные органические примеси. Сорбционная предочистка сточных вод на АА (после коагуляции) позволяет снизить С0 этого стока от 7-10

до 2-6 г/дм3 (по ХПК) за счет выделения ароматических хлор- и азотсодержащих углеводородов. Для очистки столь концентрированных стоков необходимо большое количество сорбента. В предочистке стоков производства изопрена доза АУ составляет 90 г/дм3 (в сточных водах содержится 1 % несорбируемых примесей и 25 % хорошо сорбируемых). Но сорбционная обработка позволяет в дальнейшем повысить эффект БХО от 50-60 до 90 % и избавиться от дополнительного 5-15-суточного пребывания воды в аэрируемых прудах.

Поверхностно-активные вещества (ПАВ) и красители – типичные загрязнители сточных вод. Активные триазолоновые красители полностью сорбируются из воды на угле КАД-молотый, его максимальная статическая емкость достигает 24,5-54 мг/г. Сорбция из смеси красителей различного типа значительно хуже. Сложность очистки сточных вод текстильных предприятий обусловлена наличием в них разнотипных красителей, присадок и закрепителей с различными сорбционными характеристиками. При Ду = 0,5 – 5 г/дм3 ряд красителей в статических условиях сорбируются на 40-50 %, в то время как прямые и сернистые – лишь на 10-20 %. Однако иные методы обесцвечивания этих стоков еще менее эффективны. Оптические отбеливатели сорбируются на АУ на 50-60 %.

Сорбционная емкость АУ по СПАВ сравнительно невелика, особенно в той области низких концентраций (менее 0,5 ммоль/дм3), которая характерна для сточных вод. Тем не менее применение АУ целесообразно: другие методы не обеспечивают такого полного извлечения СПАВ из водных растворов. Емкость углей АГ-3, АГ-5 и БАУ по неионогенным ПАВ и угля КАД-иодный по анионным ПАВ достигает 1,5-20 мг/г, хотя часть объема пор остается недоступной для больших молекул СПАВ и их ассоциатов. В динамических условиях длина зоны массопередачи сорбции ионогенных ПАВ (ОП-7) невелика, поэтому ГАУ в адсорберах сорбционная емкость исчерпывается на 80-90 % до

проскока. ПАВ извлекают сорбцией и из пены флотационной очистки. Практически во всех случаях можно добиться снижения концентрации ПАВ до уровней ПДК.

Применяемые при обогащении полезных ископаемых катионные диэмульгаторы ПАВ также сорбируются ГАУ. Исследования ВНИИ ВОДГЕО показали, что деэмульгатор АНП сорбируется из сточных вод, содержащих другие органические и неорганические вещества, лигниновым АУ до Ск = 0,06 мг/дм3, но при увеличении Ду до 6-18 г/дм3.

При общей очистке стоков с переменным составом неэффективно использовать специфические сорбенты, обладающие селективными свойствами. Так, если очистку общих стоков химического предприятия ведут на сугубо микропористом ГАУ, обладающем хорошей емкостью по ароматическим соединениям, то в первый период работы на АУ извлекается 70-80 % органических веществ, а при изменении состава сточных вод – лишь 20-40 % загрязнений.

С повышением эффекта очистки воды, особенно достижением низких ХПК очищенной воды, возрастает не столько расход сорбента, сколько размеры адсорберов.

В очистке бытовых сточных вод на АУ, возможно, нет столь обширной статистики, как в промышленности, но близость состава стоков городов и населенных пунктов позволяет непосредственно сравнивать полученные аналогичные результаты. С начала 70-х гг. в США строятся и работа.т экспериментальные станции по ФХО бытовых стоков; к 1975 г. Их было более 20. Везде проектированию и строительству крупных станций предшествуют натурные эксперименты.

В среднем, площадь станции ФХО бытовых стоков равна 0,05 м2 на 1 м3/сут производительности, а станции БХО – 0,15 м2. Хотя для городских сточных вод себестоимость ФХО выше себестоимости БХО, качество получаемой воды удовлетворяет самым жестким нормам для семи длительно работающих установок: эффект удаления органических веществ 91-98 %.

Общее осложнение в работе всех адсорберов для очистки бытовых стоков – образование сероводорода. Бороться с этим явлением можно эффективно с помощью частых промывок угля и преаэрации воды.

Опытно-промышленные и пилотные установки по очистке бытовых вод на АУ с 1970-1972 гг. работали в различных штатах США. В Кливленде на установке по классической схеме: коагуляция – отстаивание – фильтрование – сорбция в течение нескольких месяцев была получена очищенная вода с       БПК5 < 9 мг/дм3 и ХПК < 15 мг/дм3.

Ряд установок работали по схеме «Прогресс-3-М», особенность которой заключалась в предварительной коагуляции воды гидроокисью кальция           (0,6 – 0,8 г/дм3) при рН 11,8-12,0.

В нашей стране также разрабатываются и строятся станции ФХО бытовых стоков. В них предусмотрены не только классическая схема: коагуляция (сульфатом аммония) – флокуляция (полиэтиленимином) – отстаивание (1 ч) – фильтрование (8 – 9 м/ч) – сорбция, но и 10-минутное предсорбционное

аэрирование и постхлорирование.

Сорбционная очистка бытовых и промышленных сточных вод на ПАУ по технологии существенно отличается от сорбции на ГАУ. Обычно для получения идентичных эффектов очистки воды дозы ПАУ больше доз ГАУ. Кроме того, на ПАУ не всегда удается получить глубоко очищенную (более 95 %) воду. Сама схема обработки воды на ПАУ несколько иная, так как требования к грубодисперсным примесям в воде при работе ПАУ менее жесткие /1/.

4 Расчет адсорбционной установки

4.1 Методика расчета

Ориентировочный расчет адсорбционной установки ведется в следующей последовательности:

  1. Определяют общую площадь Fобщ, м2, параллельно работающих адсорберов по формуле (1):

,                                                       (1)

где: Q – расход сточных вод, м3/ч.

  1. Число параллельно работающих адсорберов определяют по формуле (2):

,                                                       (2)

где: Fадс – площадь поперечного сечения одного адсорбера, м2.

  1. Общая высота угольной загрузки Нобщ, м, последовательно работающих адсорберов:

,                                                       (3)

где: Нm – длина зоны массопередачи, заключенной между слоями с С0 и Спр,

       м;

       С0 – концентрация загрязнений в воде, контактирующей с

       отработавшим активным углем, мг/л;

       Спр – максимально допустимая концентрация загрязнений в очищенной

       воде, мг/л;

Величину Нm определяют экспериментально на модели адсорбера диаметром не менее 30 мм, высотой 6-12 м при v = 4-10 м/ч или принимают Н не более 12 м при v = 10 м/ч и при доочистке воды от С0 = 250 мг/л до Спр = 30 мг/л, считая по ХПК. В тех же условиях при v = 4 м/ч ориентировочно можно принять Н = 5 м.

  1. Резервную высоту угольной загрузки Нр, обеспечивающую требуемое качество доочистки в период выгрузки отработавшего угля и включения в работу чистого сорбента, принимают не менее 20 % Нm или определяют по формуле (4):

,                                                       (4)

где: u – скорость перемещения фронта проскока (воды с концентрацией

       Спр), м/ч;

       t – продолжительность периода перегрузки адсорберов, ч.

  1. Величину u определяют экспериментально по результатам динамических опытов или ориентировочно по формуле (5):

,                                                      (5)

где: ξ – порозность угольной загрузки, равная примерно 0,5;

       а0 – величина адсорбции, мг/л, равновесная С0;

Величина а0 принимается по экспериментальным данным. При отсутствии таких данных ориентировочно принимают u = 2-6 см/ч.

  1. Определяют число последовательно работающих адсорберов (обычно принимается не более 3):

,                                                       (6)

где: Надс – высота угольной загрузки в одном адсорбере, м.

  1. Вычисляют продолжительность фильтроцикла одного адсорбера Тф, ч, после окончания начального периода работы установки (1-3 сут) по формуле (7):

,                                                       (7)

Для уменьшения общего количества сорбента, загружаемого в установку, и для наиболее полного использования адсорбционной емкости угля применяют адсорберы с противоточным движением воды и угольной загрузки в плотном или псевдоожиженном виде.

4.2 Расчет адсорбционной установки

Исходные данные: расход сточных вод Q = 417 м3/ч, скорость потока           v = 10,0 м/ч, D = 3,5.

  1. Определим общую площадь Fобщ, м2, параллельно работающих адсорберов по формуле (1):

м2

м2

  1. Число параллельно работающих адсорберов определяем по формуле (2):
  1. Общую высоту угольной загрузки Нобщ, м, последовательно работающих адсорберов определяем по формуле (3):

=36 м

Величину Нm принимаем равной 12 м.

  1. Резервную высоту угольной загрузки Нр определяем по формуле (4):

м

Величину u принимаем равной 6 см/ч, t = 4 ч.

  1. Определяем число последовательно работающих адсорберов по формуле (6):
  1. Вычисляем продолжительность фильтроцикла одного адсорбера Тф, ч, по формуле (7):

ч

Заключение

Среди физико-химических методов очистки сточных вод от нефтепродуктов лучший эффект дает сорбция на углях. 

Сорбция представляет собой один из наиболее эффективных методов глубокой очистки от растворенных органических веществ сточных вод предприятий целлюлозно-бумажной, химической, нефтехимической, текстильной и других отраслей промышленности.

Сорбционная очистка может применяться самостоятельно и совместно с биологической очисткой как метод предварительной и глубокой очистки.

Таким образом, сорбционные методы относятся к наиболее эффективным для глубокой очистки сточных вод от растворенных органических веществ.

Преимуществами сорбционных методов являются:

- возможность адсорбции веществ из многокомпонентных смесей;

- высокая эффективность при малых концентрациях загрязнений сточных вод;

- эффективны для извлечения из сточных вод ценных растворенных веществ с их последующей утилизацией и использование очищенных сточных вод в системе оборотного водоснабжения промышленных предприятий.

Применение технологических сточных вод в системе оборотного водоснабжения решает не только задачу экономии свежей воды, но и радикального оздоровления водоемов.

Недостатком сорбционной очистки сточной воды является:

- относительно высокая стоимость;

- малый срок службы;

- затраты на обслуживание.

Сорбенты способны извлекать из воды многие органические вещества, в том числе и биологически жесткие, не удаляемые из нее другими методами. При использовании высокоактивных сорбентов воду можно очистить от загрязнений до практически нулевых остаточных концентраций. Сорбцию применяют и при небольших концентрациях загрязнений, когда другие методы очистки оказываются неэффективными и требуется глубокая степень очистки. В тех случаях, когда концентрация сорбируемых веществ в исходных сточных водах велика, обычно выгоднее использовать другие методы очистки.

В качестве сорбентов применяют различные пористые материалы: золу, коксовую мелочь, торф, силикагели, алюмогели, активные глины и др. Эффективными сорбентами являются активированные угли различных марок. В зависимости от области применения метода сорбционной очистки, места расположения адсорберов в общем комплексе очистных сооружений, состава сточных вод, вида и крупности сорбента и др. назначают ту или иную схему сорбционной очистки и тип адсорбера. Наиболее простым является насыпной фильтр, представляющий собой колонну с неподвижным слоем сорбента, через который фильтруется сточная вода. Наиболее рациональное направление фильтрования жидкости – снизу вверх, так как в этом случае происходит равномерное заполнение всего сечения колонны и относительно легко вытесняются пузырьки воздуха или газов, попадающих в слой сорбента вместе со сточной водой.

Список использованных источников

  1. Смирнов, А.Д. Сорбционная очистка воды: учеб. пособие / А.Д. Смирнов. – Л.: Химия, 1982. – с.63-82.
  2. Ефремов, И.В. Методы и технические средства защиты гидросферы: учеб. пособие / И.В. Ефремов. – Оренбург: ГОУ ОГУ, 2005. – 259 с.
  3. Яковлев, С.В. Водоотводящие системы промышленных предприятий: учеб. для вузов / С.В. Яковлев, Я.А. Карелин, Ю.М. Ласков, Ю.В. Воронов. – М.: Стройиздат, 1990. – с. 192-203.
  4. Кульский, Л.А. Технология очистки природных вод: учеб. пособие / Л.А. Кульский, П.П. Строкач. – Киев: Вища школа, 1981. – 328 с.

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

privetstudent.com

Сорбционная очистка воды

Выбор сорбентов. Ассортимент сорбентов для предварительной очистки воды, выпускаемых промышленностью, весьма разнообразен. Для очистки воды от органических веществ используют активированные угли, гелевые и макропористые аниониты и др. Активированные угли обладают замедленной кинетикой сорбции из растворов, что требует больших площадей фильтрации, плохой регенерируем остью с помощью реагентов (остаточная емкость после первой регенерации значительно меньше половины исходной), механической непрочностью, высокой зольностью.

Аниониты, особенно макропористые, свободны от многих перечисленных недостатков. Первичный выбор лучших из них проводят в статических условиях при контакте сорбентов с модельными растворами или с данной водой в течение часа.

После отбора лучших образцов (в данном случае ими оказались отечественные сорбенты полимеризационного типа АВ-171 и конденсационного типа ИА-1) проводят кинетические исследования. Их целью является определение характера стадии, лимитирующей процесс, нахождение коэффициентов диффузии и времени установления равновесия. Стадию, лимитирующую процесс, определяют по следующему признаку: если перемешивание раствора способствует ускорению сорбции, это свидетельствует о преимущественном влиянии внешней диффузии; прямое доказательство внутридиффузионного механизма дает опыт с «прерыванием». Если после перерыва возобновить сорбционный процесс и сорбционная активность твердой фазы возрастет, можно с уверенностью говорить о внутридиффузионном характере процесса.

Сорбция гумусовых веществ. Внутридиффузионная кинетика, по данным, лимитирует сорбцию гумусовых веществ, т. е. сорбционную предварительную очистку воды.

Анализ этого уравнения показывает, что потеря защитного действия, выраженная в линейных или объемных единицах сорбента, тем больше (а рабочий период колонки тем меньше), чем больше скорость потока, радиус зерен сорбента и заданная глубина очистки.

Из кинетических опытов определяют коэффициенты диффузии и время установления равновесия в системах ионит—раствор и строят изотермы сорбции. Изотермы сорбции гуминовых и фульвокислот анионитами ИА-1 и АВ-171 описываются уравнением Ленгмюра.

В работах сопоставлены результаты экспериментального определения сорбционнои емкости до проскока гумусовых веществ с сорбционной ёмкостью, рассчитанной по уравнениям; расхождения не превышают 10—15%. Изменяя скорость потока, глубину очистки, радиус зерна сорбента и сам сорбент, можно определить потерю времени защитного действия колонны для каждого варианта. В то же время следует помнить, что это возлагает очень большую ответственность на точность определения коэффициентов диффузии и равновесия в системах сорбент — раствор, дающих исходные данные для расчета динамики сорбции.

Итак, наилучшим сорбентом для предварительной очистки воды оказался макропористый анионит ИА-1, работающий в хлор-форме, при рН очищаемого раствора, равном 3,0—3,5. Что касается размера зерен, его выбор ограничен характером дренажной системы и желательной скоростью пропускания воды.

В природных водах присутствуют гуминовые и фульвокислоты. Первые сорбируются хуже, и их «проскок» практически лимитирует процесс очистки. Поэтому величину следует рассчитывать по содержанию в очищаемой воде гуминовых кислот. Если после коагуляционной очистки они отсутствуют, рабочий период сорбционной колонны рассчитывают по содержанию в воде фульвокислот.

То обстоятельство, что сорбция слабодиссоциирующих гуминовой и фульвокислот идет лучше в кислой среде и на анионите в солевой форме, указывает на неионообменный механизм поглощения этих веществ и подсказывает экономически и технологически выгодную схему предварительной очистки воды. Сорбционную колонну с ионитом ИА-1 следует устанавливать после катионита в Н-форме и следующего за ним декарбонизатора. Это освобождает от необходимости подкислять воду, так как она подкисляется самопроизвольно при катионировании. Таким образом, сорбционная колонна становится составной частью обессоливающей установки. При совмещении коагуляционной очистки с сорбционной вода на 80—85% освобождается от органических примесей. Дальнейшая, более глубокая очистка воды от органических примесей проводится на ионитах обессоливающей части установки.

Извлечение других органических веществ. Поверхностные и артезианские воды содержат органические вещества, относящиеся к различным классам соединений. Установлено, что такие вещества, как сахара, белковоподобные вещества, аминокислоты проходят через систему ионитовых колонн и попадают в глубокообессоленную воду. Причем их количество зависит от состава исходной воды и значительно превышает содержание минеральных примесей. Максимальное извлечение этих веществ из воды в ходе ее предварительной очистки сорбционным методом является необходимым.

В работе сопоставлена способность некоторых активированных углей и макропористых анионитов сорбировать различные аналитически определяемые органические соединения, растворенные в природных водах. Для этого через слой сорбента высотой 60 см со скоростью 7 м/ч пропускали по 100 объемов речных вод после их Н-катионирования, создающего наиболее благоприятные условия для сорбции.

Фульвокислоты извлекаются лучше смолами, чем углями, причем емкости ионообменников по фульвокислотам практически одинаковы. Но и в этом случае применение ионита ИА-1 целесообразнее, так как он регенерируется легче и с меньшими расходами реагентов.

Второй очень значительной группой соединений, которые, попадая в глубокообессоленную воду, могут влиять на ее удельное электрическое сопротивление, являются карбоновые кислоты. Для их сорбции наиболее пригодны уголь СКТ-ВТУ-2 и анионит АВ-171. Из этих двух сорбентов предпочтение, безусловно, следует отдать иониту, так как его емкость может быть восстановлена химическими реагентами. Для удаления простых и сложных аминокислот также следует применять анионит АВ-171.

Простые и сложные сахара, не влияющие на удельное электрическое сопротивление, обессоленной воды, в значительной степени сорбируются только углем БАУ. Поэтому при выборе сорбентов для очистки воды следует руководствоваться не только величиной их емкости и возможностью ее восстановления, но и необходимостью удаления из воды того или иного соединения.

Для ориентировочной оценки распределения органических веществ в слоях указанных сорбентов были сняты соответствующие выходные кривые. Загрузка ионитов в хлор-форме равнялась 1 л при высоте слоя 60 см; скорость протекания раствора 10 м/ч.

Фильтрат для анализа отбирали непрерывно фракциями по 10 л каждая. Продолжительность рабочего периода колонны выбрана равной 200 приведенным объемам; рН пропускаемой воды создавали предварительным катионироваиием исходной воды. Применяя различные сорбенты и их сочетания, можно удалить значительную часть органических веществ, растворенных в воде. Однако получить воду, полностью освобожденную от органических веществ с помощью перечисленного набора средств, вряд ли возможно.

Содержание и соотношение таких органических неэлектролитов, как сахара, белки, эфиры и т. п., изменяются не только от одной географической зоны к другой, но и в пределах одного региона. Поэтому нельзя ожидать, что при одинаковых технологических схемах и режимах деминерализации обессоленные воды будут совпадать по количественному и качественному содержанию органических веществ. В связи с этим следует относиться с осторожностью к попыткам нормирования сухого остатка высокоомной воды без учета состава исходной.

Удаление железа (обезжелезивание). Железистыми называют воды, содержащие более 1 мг/л железа. Катионит сорбирует ионы двухвалентного железа примерно так же, как и ионы кальция, а ионы трехвалентного железа — еще более эффективно. Можно было ожидать, что при ионообменном обессоливании вода будет одновременно и «обезжелезиваться». Этому процессу мешают, однако, некоторые физико-химические особенности соединении железа, присутствующих в природных водах.

В открытых водоемах, хорошо аэрируемых, значительная часть железа находится в виде соединений Fe разной степени гидролизованности.

При коагуляционной и последующей сорбционной очистках вода освобождается не только от окрашенных (главным образом, гумусовых соединений), но и от коллоидных и комплексных форм железа. Таким образом, очистка от органических веществ является одновременно актом обезжелезивания воды.

Предприятиям, потребляющим особо чистую обессоленную воду, рекомендуется всюду (где возможно) получать ее из подземных вод, свободных, как правило, от органических загрязнений. Известно, что более 25% всех водопроводов получают подземную воду с содержанием железа от 1 до 5 мг/л.

В подземных водах, лишенных кислорода, железо большей частью находится в форме раствора бикарбоната частично гидролизованного. Если бы это вещество поступало на катионит в неокисленном и негидролизованном виде или не окислялось бы в самом катионитовом фильтре, можно было бы ожидать практически полного обмена ионов железа на ионы водорода. Однако наряду с реакцией ионного обмена, скорость которой определяется диффузионными процессами, идут реакции гидролиза солей железа, окисления и перехода в слабодиссоциирующие и практически нерастворимые соединения, способные к образованию коллоидов. Совокупность таких процессов приводит к тому, что вода, содержащая, например, в равновесном состоянии 0,16 мг/л железа в ионной форме, может характеризоваться общим содержанием железа на уровне 2 мг/л. Катионит же поглотит только ионную форму железа и растворит с поглощением часть наименее стойких продуктов гидролиза.

Выделение ионов водорода при работе катионита могло бы сдерживать реакцию и даже сдвигать ее влево, тем более, что количество ионов водорода в Н-катионированной воде определяется общим содержанием солей, которое практически на два порядка больше количества ионов железа в воде.

По мере срабатывания верхних слоев катионита два обстоятельства будут способствовать сдвигу реакции вправо: наличие в слое ионов Fe(II), каталитически ускоряющих их превращение в ионы Fe(III), и частичное поглощение катионитом ионов водорода, обменивающихся на ионы натрия и кальция, которыми заполнен отработанный слой смолы. Образующиеся в этих условиях гидроксид Fe(III) и другие продукты гидролиза уже не будут участвовать в ионном обмене и транзитом пройдут в Н-катионированную воду, так же, как и та часть подобных соединений железа, которая присутствовала в исходной воде.

Количественное описание этих процессов пока затруднительно. В то же время присутствие железа в неионной форме в Н-катионированной и обессоленной водах удовлетворительно объясняется предложенной концепцией и свидетельствует о необходимости удаления железа из железистых подземных вод перед их подачей на обессоливающую ионообменную установку. Приведенное выше уравнение подсказывает основные пути удаления железа из воды. Это аэрация (насыщение кислородом) и подщелачивание (связывание ионов водорода). В бикарбонатных водах последнее проходит самопроизвольно с выделением стехиометрического количества диоксида углерода. Аэрацию можно проводить продувкой воздухом, разбрызгиванием воды в воздухе или подачей озона; в качестве других окислителей можно использовать активный хлор, перманганат калия. Под действием окислителей иониты «стареют», поэтому желательно проводить обезжелезивание безреагентным методом.

Удалению железа из подземных вод посвящена монография, в которой обобщены как теоретические, так и технологические аспекты проблемы. Учитывая специфику получения сравнительно небольших объемов особо чистой обессоленной воды для производственных иужд и специфику самих производств, потребляющих такую воду, следует остановиться на методе упрощенной аэрации с последующим фильтрованием.

Над открытым фильтром через отверстия в подающих трубах разбрызгивается вода. Толщина слоя песка в фильтре обычно не менее 1,2 м, а размер зерен от 0,8 до 1,6 мм. Большей грязеемкостью отличаются фильтры с двухслойной загрузкой общей толщиной 1,2—1,5 м и толщиной верхнего слоя 0,5 м. Для нижнего слоя используют кварцевый песок размером зерен 0,8—1,2 мм, а для верхнего — антрацитовую крошку размером 0,9—2,4 мм. Скорость фильтрования иа открытых фильтрах достигает 10 м/ч. Как правило, с уменьшением скорости пропускания воды грязеемкость фильтров повышается, и поэтому открытые фильтры надо рассчитывать на скорость, не превышающую 5—7 м/ч.

В зависимости от принятой скорости фильтрования, исходного содержания железа в воде и других факторов, продолжительность работы фильтров, естественно, различна. При скорости фильтрования 5—7 м/ч и исходном содержании железа в воде 3—4 мг/л цикл работы установки 60—100 ч. После этого фильтры промывают противотоком интенсивностью 15—18 л/(с-м2) в течение 10-15 мин.

Объем промывных вод для фильтров на участке обезжелезивания воды достигает 4% от объема очищенной воды. Когда работа обезжелезивающей установки данного типа хорошо отлажена, содержание железа в фильтрате составляет 0,05—0,1 мг/л.

В отличие от дистиллята, содержащего до 5 мкг/л железа, технический конденсат бывает обогащен продуктами коррозии. При получении из такого конденсата особо чистой обессоленной воды необходимо предварительное обезжелезивание. Для этого используют сульфоугольные фильтры, работающие с эффективностью 25—50%, или более эффективные магнетитовые фильтры, намывные целлюлозные фильтры, намывные ионитовые фильтры (носящие за рубежом название powdex). Предложены анионитовые фильтры, где удаление железа основано на коагулирующем действии анионита в ОН-форме. Намывные ионитовые фильтры работают с эффективностью, приближающейся к 100% за счет практически мгновенной кинетики процесса. Здесь наряду с сорбцией ионов из жидкой фазы происходит механическое задержание частиц твердой фазы, коагуляция и образование комплексов с анионитом, если для намывного слоя берут смесь катионов и анионообменников.

Опыты показали пригодность намывных ионитовых фильтров для извлечения из воды гумусовых веществ, комплексующих железо и другие металлы.

Острота проблемы обезжелезивания как этапа предварительной очистки воды особенно выявилась в связи с необходимостью использования ультрачистой воды для производств микроэлектроники. Для финишной очистки воды перед ее подачей на отмывку деталей приборов используют микрофильтр с порами 0,2 мкм, задерживающий микробные тела. Если из обессоленной воды недостаточно удалено железо на предшествующих этапах, то микрофильтры быстро забиваются.

Умягчение воды. При частичном обессоливании воды электродиализным методом или с помощью обратного осмоса в ряде случаев необходимо предварительно умягчить воду, т. е. освободить ее от катионов кальция и магния, способных при соответствующем анионном составе воды образовывать осадки на ионитных мембранах или на мембранах (волокнах), используемых в аппаратах обратного осмоса.

Умягчение как этап предварительной очистки при обессоливании относительно небольших масс воды целесообразно проводить ионообменным способом. Регенерация катионита, т. е. перевод его в натриевую форму, проводится пропусканием через отработавший слой сорбента 6—10%-ного раствора хлорида натрия и последующей отмывкой водой.

По причинам, которые будут рассмотрены ниже, расход поваренной соли для регенерации превышает стехиометрический в 2,5—5 раз. При работе с водой, имеющей высокое содержание солей, для умягчения целесообразно использовать сильнокислотный катионит типа КУ-2. При этом по сравнению с такими катионнообменниками, как сульфоуголь или КУ-1, довольно значительно сокращается расход соли на регенерацию.

farbenliebe.ru

Сорбенты для очистки воды

Человеческая деятельность ухудшает качество воды в природе, которую человек  употребляет. Рассмотрим опасные для человеческого организма характеристики воды.

Сперва следует отметить понижение pH уровня пресной воды. Серная и азотная кислоты увеличивают количество сульфатов и нитратов.

В подземных источниках и реках растет концентрация ионов кремния, кальция и магния. Это связано с подкисленными дождями, лучше растворяющими многие породы, включая карбонатные.

Сегодня фиксируют повышенную концентрацию аммонийного азота, фосфатов, нитритов и нитратов в природных источниках воды.

На человеческий организм негативно влияет ряд тяжелых металлов (ртуть, свинец, цинк, мышьяк), которые попадают вместе с  водой и не выводятся.

Содержание соли в водных источниках каждый год увеличивается на 30-50 мг/л.  Ее источники: воздух ,сточные воды и твердые отходы. По статистике из 1 тыс. тонн городского мусора в землю смывается  до 8 тонн солей.

Природная вода так же загрязнена стойкими биологическими соединениями: токсины, синтетические ПАВ, мутагенные и канцерогенные вещества, пестициды и их продукты распада.

Эвтофикация водоемов и минерализация органики нуждаются в кислороде. Он берется из воды. Многие гидрофобные вещества ведут к снижению концентрации полезного газа в водоемах. В его отсутствии начинают происходить восстановительные реакции. Примером может служить восстановление сероводорода из сульфатов.

Над пресными источниками висит угроза радиоактивного загрязнения опасными изотопами.

Методы сорбционной очистки воды

Схема сорбционной очистки воды Вышеперечисленное показывает: сточные воды стали гетерогенной смесью с растворенными и взвешенными веществами различного происхождения, которые могут окисляться.

Как показывает практика водоочистки, использование сорбитов эффективно после механической очистки. На этом этапе вода не содержит грубодисперсные, коллоидные и растворенные примеси.

Чаще всего используют следующую последовательность:

  1. коагуляция;
  2. отстаивание;
  3. фильтрование;
  4. сорбция.

Комбинирование методов водоочистки, совместно с коагуляцией и осветлением воды, помогут сэкономить сорбирующие материал. Технические и экономическая сложности снабжения многих районов пресной водой будут решены.

Активированный уголь для очистки воды

Удалить органику природного и неприродного происхождения в воде можно при помощи популярного сорбента для очистки воды – активированного угля. Вода может проходить через слой активированного угля или в нее вводят измельченный уголь.

Количество органики природного происхождения в воде нормируется косвенно: запах, привкус и цветность. Последняя улучшается коагулированием и хлорированием, которые значительно дешевле активированного угля. Сорбент используют для изъятия примесей, придающие необычный запахи и вкус воде, а так же неприродные органические вещества: пестициды, нефтепродукты, детергенты и т.д. Если полное удаление не возможно, то снижают до минимума содержание этих веществ.

Каждое вещество имеет свое допустимое значение. Например сероводород и хлор– до 0,3 мг/л, а хлорфенол –0,02 мг/л.

Эффект от использования порошкообразного активированного угля (ПАУ) при  незначительном содержании вредных примесей в статических условиях невелик. Объясняется это коротким промежутком времени контактирования ПАУ с примесями. Сорбируемому веществу нужно значительно больше времени, что бы попасть в поры зерна угля. Отсюда следует, что на способность сорбировать влияет размер зерен ПАУ.

Ее можно охарактеризовать фенольным числом. Оно показывает, сколько миллиграммов ПАУ нужно для уменьшения фенола с 0,1 до 0,01 мг в одном литре воды при взбалтывании на протяжении часа. Чем выше показатель, тем ниже сорбционная способность ПАУ. В производстве допускается значение фенольного числа до 30. Отличными образцами ПАУ будут с фенольным числом до 15.

Марка активированного угля подпирается индивидуально в лабораториях. В опытах должна использоваться хлорированная и не хлорированная вода.

Использовать ПАУ можно перед отстойником и после него. В первом случае концентрация не должна превышать 7 мг/л при долгом контакте и 12 мг/л при кратковременном использовании. Если на фильтр попадет излишки ПАУ, потребуется много промывочной воды и резко снизиться напор. Для лучшего осветления воды с ПАУ, специалисты рекомендуют использовать двухслойный фильтр. Небольшие дозы ПАУ лучше использовать после отстойника. В противном случае сорбирующие способности угля не будут использованы в полном объеме, так как он быстро осядет на дно.

Применение активированного угля не влечет больших затрат. В наличии должны быть помещение для складирования ПАУ и блок изготовления ПАУ, который будет дозировать уголь.

Особенности применения активированного угля:

  • ПАУ в сухом виде взрывоопасное и пыльное вещество (используют 2-10% суспензию);
  • невозможно регенерировать – постоянное использование не целесообразно (существует гранулированный регенерирующий уголь, но его стоимость высока);

Чаще всего активированный уголь применяется для удаления свободного хлора в воде.

Безуглеродные сорбенты для очистки воды

Безуглеродные сорбенты самые распространены в технологиях  водоочистки. Они бывают природного и искусственного производства: цеолиты, глинистые породы и т.д

Преимущества неуглеродных сорбентов:

  • повышенная емкость;
  • способность обмениваться катионами;
  • невысокая цена и распространенность.

Глинистые породы

Они широко используются в процессе очистки воды. Их структура хороша развита, имеет множество микропор разного размера, слоистую жесткость и способна расширяться.

Процесс сорбции с применением глинистых пород сложен. В него входят Ван-дер-ваальсовые реакции. Они хорошо обесцвечивают воду, убирают взвешенные частицы и токсичные органические соединения хлора и гербицидов, ПАВ.

Природные сорбенты берут в местности их использования, что увеличивает их потребление в технологии водоочистки.

Цеолиты

Представляет собой алюмосиликатный каркасный материал. Характеризуются трехмерным алюмосиликатным каркасом с правильной тетраэдрической структурой и отрицательным зарядом. Гидратированные ионы щелочных и щелочноземельных металлов расположены в пустотах каркаса и имеют положительный заряд, компенсирующий заряд каркаса. Цеолиты можно использовать только для веществ, у которых размеры молекул меньше входного отверстия. Их еще называют ситом для молекул.

Существует более 30 видов. Самые применяемые: шабазит, морденит, клинопптиломит. Их легко добывать и перерабатывать.

После добычи их прокаливают в печах при 1 тыс. градусов с хлоридом карбонатом натрия. Применение кремнийорганических соединений на поверхности цеолитов придают им гидрофобные свойства.

Используются в порошкообразной форме. Цеолиты задерживают:

  • ПАВ;
  • красители;
  • пестициды;
  • коллоидные и бактериальные загрязнения;
  • органические соединения.

Неорганические иониты

Они считаются перспективным направление в технологии водоочистки. Самые распространенные:

  • цирконилфасфат;
  • титаносиликаты и цирканосиликаты;
  • оксалат циркония;
  • соли гетеро- и поликислот;
  • ферроцианты тяжелых и щелочных металлов;
  • гидроксиды железа и сульфиды железа, нерастворимые в воде;

Большинство из них не может иметь водородную форму, при которой их структура разрушиться. Удобной для них стала солевая форма. Но она исключает возможность обессоливать воду без редких анионитов неорганических минералов. Для этого используют органические катиониты и аниониты на основе синтетической органики.

Органические иониты

Множество органических ионитов характеризуются гелевой структурой. Реальных пор нет, но при попадании в растворы воды они набухают и могут обмениваться ионами.

Существуют макропористые иониты, работающие по принципу активированного угля. Они устойчивы к механической нагрузке, осмотически стабильны, имеют  улучшенный обмен и ситовой эффект, но менее емкие по сравнению с гелевыми.

Современная наука позволяет синтезировать органические иониты с любыми ценными свойствами, не имеющие природных аналогов.

Регенерация сорбентов

Виды методов восстановления:

  • химический;
  • термический при низких температурах;
  • термический.

Химический метод восстановления

Сорбент обрабатывают органическим или неорганическим реагентом жидкой или газообразной формы. Температура обработки не превышает 100 градусов.

Регенерации подвержены углеродные и безуглеродные сорбенты. Процесс происходит в адсорбационном аппарате. Каждый тип сорбата имеет свой химический способ.

Доступным методом регенерации является нагревание сорбента в воде. Растет степень диссоциации и способность растворяться сорбата. Происходит десорбция части сорбата. Например, активированный уголь регенерируют нагретой водой. Эффект восстановления достигает 40 %.

Так же активированный уголь восстанавливать гидроокисью и карбонатом натрия. Сорбционная емкость уменьшается на 50%.

Известны способы с гамма-излучениями, но на практике их не применяют.

Термическая регенерация при низких температурах

Сорбенты подвергаются паровой или газовой обработке. Температура достигает 400 градусов. Процесс простой, неопасный и легко воспроизводимый на многих производствах. Из оборудования потребуются парогенератор и охладитель для конденсата. В последствие его сжигают или используют для получения ценного сорбата.

Термическая регенерация

Первые два метода не позволяют полностью восстановить адсорбционные угли.  Термическое восстановление состоит из нескольких стадий и касается как сорбата, так и сорбента. Она схожа с технологией получения активных углей. Ее стоимость будет равна половине стоимости нового материала. Разложение примесей происходит при 350 градусах, а при 400 градусах половина адсорбента разрушиться.

Сегодня следует уделять время на разработку новых эффективных методов восстановления сорбентов. Это должно снизить стоимость очистки воды.

vse-o-vode.ru


Смотрите также