Парадокс это что такое примеры


10 занимательных логических парадоксов

Учёные и мыслители с давних времён любят развлекать себя и коллег постановкой неразрешимых задач и формулированием разного рода парадоксов. Некоторые из подобных мысленных экспериментов сохраняют актуальность на протяжении тысяч лет, что свидетельствует о несовершенстве многих популярных научных моделей и «дырах» в общепринятых теориях, давно считающихся фундаментальными. Предлагаем вам поразмыслить над наиболее интересными и удивительными парадоксами, которые, как сейчас выражаются, «взорвали мозг» не одному поколению логиков, философов и математиков.

1. Апория «Ахиллес и черепаха»

Парадокс Ахиллеса и черепахи — одна из апорий (логически верных, но противоречивых высказываний), сформулированных древнегреческим философом Зеноном Элейским в V-м веке до нашей эры. Суть её в следующем: легендарный герой Ахиллес решил посоревноваться в беге с черепахой. Как известно, черепахи не отличаются прыткостью, поэтому Ахиллес дал сопернику фору в 500 м. Когда черепаха преодолевает эту дистанцию, герой пускается в погоню со скоростью в 10 раз большей, то есть пока черепаха ползёт 50 м, Ахиллес успевает пробежать данные ей 500 м форы. Затем бегун преодолевает следующие 50 м, но черепаха в это время отползает ещё на 5 м, кажется, что Ахиллес вот-вот её догонит, однако соперница всё ещё впереди и пока он бежит 5 м, ей удаётся продвинуться ещё на полметра и так далее. Дистанция между ними бесконечно сокращается, но по идее, герою так и не удаётся догнать медлительную черепаху, она ненамного, но всегда опережает его.

© www.student31.ru

Конечно, с точки зрения физики парадокс не имеет смысла — если Ахиллес движется намного быстрее, он в любом случае вырвется вперёд, однако Зенон, в первую очередь, хотел продемонстрировать своими рассуждениями, что идеализированные математические понятия «точка пространства» и «момент времени» не слишком подходят для корректного применения к реальному движению. Апория выявляет расхождение между математически обоснованной идеей, что ненулевые интервалы пространства и времени можно делить бесконечно (поэтому черепаха должна всегда оставаться впереди) и реальностью, в которой герой, конечно, выигрывает гонку.

2. Парадокс временной петли

«Новые путешественники во времени» Дэвида Туми

Парадоксы, описывающие путешествия во времени, давно служат источником вдохновения для писателей-фантастов и создателей научно-фантастических фильмов и сериалов. Существует несколько вариантов парадоксов временной петли, один из самых простых и наглядных примеров подобной проблемы привёл в своей книге «The New Time Travelers» («Новые путешественники во времени») Дэвид Туми, профессор из Университета Массачусетса.

Представьте себе, что путешественник во времени купил в книжном магазине экземпляр шекспировского «Гамлета». Затем он отправился в Англию времён Королевы-девы Елизаветы I и отыскав Уильяма Шекспира, вручил ему книгу. Тот переписал её и издал, как собственное сочинение. Проходят сотни лет, «Гамлета» переводят на десятки языков, бесконечно переиздают, и одна из копий оказывается в том самом книжном магазине, где путешественник во времени покупает её и отдаёт Шекспиру, а тот снимает копию и так далее… Кого в таком случае нужно считать автором бессмертной трагедии?

3. Парадокс девочки и мальчика

Мартин Гарднер / © www.post-gazette.com

В теории вероятностей этот парадокс также называют «Дети мистера Смита» или «Проблемы миссис Смит». Впервые он был сформулирован американским математиком Мартином Гарднером в одном из номеров журнала «Scientific American». Учёные спорят над парадоксом уже несколько десятилетий и существует несколько способов его разрешения. Поразмыслив над проблемой, вы можете предложить и свой собственный вариант.

В семье есть двое детей и точно известно, что один из них — мальчик. Какова вероятность того, что второй ребёнок тоже имеет мужской пол? На первый взгляд, ответ вполне очевиден — 50 на 50, либо он действительно мальчик, либо девочка, шансы должны быть равными. Проблема в том, что для двухдетных семей существует четыре возможных комбинации полов детей — две девочки, два мальчика, старший мальчик и младшая девочка и наоборот — девочка старшего возраста и мальчик младшего. Первую можно исключить, так как один из детей совершенно точно мальчик, но в таком случае остаются три возможных варианта, а не два и вероятность того, что второе чадо тоже мальчик — один шанс из трёх.

4. Парадокс Журдена с карточкой

Проблему, предложенную британским логиком и математиком Филиппом Журденом в начале XX-го века, можно считать одной из разновидностей знаменитого парадокса лжеца.

Филипп Журден

Представьте себе — вы держите в руках открытку, на которой написано: «Утверждение на обратной стороне открытки истинно». Перевернув открытку, вы обнаруживаете фразу «Утверждение на другой стороне ложно». Как вы понимаете, противоречие налицо: если первое утверждение правдиво, то второе тоже соответствует действительности, но в таком случае первое должно оказаться ложным. Если же первая сторона открытки лжива, то фразу на второй также нельзя считать истинной, а это значит, первое утверждение опять-таки становится правдой… Ещё более интересный вариант парадокса лжеца — в следующем пункте.

5. Софизм «Крокодил»

На берегу реки стоят мать с ребёнком, вдруг к ним подплывает крокодил и затаскивает ребёнка в воду. Безутешная мать просит вернуть её чадо, на что крокодил отвечает, что согласен отдать его целым и невредимым, если женщина правильно ответит на его вопрос: «Вернёт ли он её ребёнка?». Понятно, что у женщины два варианта ответа — да или нет. Если она утверждает, что крокодил отдаст ей ребёнка, то всё зависит от животного — посчитав ответ правдой, похититель отпустит ребёнка, если же он скажет, что мать ошиблась, то ребёнка ей не видать, согласно всем правилам договора.

© Коракс Сиракузский

Отрицательный ответ женщины всё значительно усложняет — если он оказывается верным, похититель должен выполнить условия сделки и отпустить дитя, но таким образом ответ матери не будет соответствовать действительности. Чтобы обеспечить лживость такого ответа, крокодилу нужно вернуть ребёнка матери, но это противоречит договору, ведь её ошибка должна оставить чадо у крокодила.

Стоит отметить, что сделка, предложенная крокодилом, содержит логическое противоречие, поэтому его обещание невыполнимо. Автором этого классического софизма считается оратор, мыслитель и политический деятель Коракс Сиракузский, живший в V-м веке до нашей эры.

6. Апория «Дихотомия»

© www.student31.ru

Ещё один парадокс от Зенона Элейского, демонстрирующий некорректность идеализированной математической модели движения. Проблему можно поставить так — скажем, вы задались целью пройти какую-нибудь улицу вашего города от начала и до конца. Для этого вам необходимо преодолеть первую её половину, затем половину оставшейся половины, далее половину следующего отрезка и так далее. Иначе говоря — вы проходите половину всего расстояния, затем четверть, одну восьмую, одну шестнадцатую — количество уменьшающихся отрезков пути стремится к бесконечности, так как любую оставшуюся часть можно разделить надвое, значит пройти весь путь целиком невозможно. Формулируя несколько надуманный на первый взгляд парадокс, Зенон хотел показать, что математические законы противоречат реальности, ведь на самом деле вы можете без труда пройти всё расстояние без остатка.

7. Апория «Летящая стрела»

Знаменитый парадокс Зенона Элейского затрагивает глубочайшие противоречия в представлениях учёных о природе движения и времени. Апория сформулирована так: стрела, выпущенная из лука, остаётся неподвижной, так как в любой момент времени она покоится, не совершая перемещения. Если в каждый момент времени стрела покоится, значит она всегда находится в состоянии покоя и не движется вообще, так как нет момента времени, в который стрела перемещается в пространстве.

© www.academic.ru

Выдающиеся умы человечества веками пытаются разрешить парадокс летящей стрелы, однако с логической точки зрения он составлен абсолютно верно. Для его опровержения требуется объяснить, каким образом конечный временной отрезок может состоять из бесконечного числа моментов времени — доказать это не удалось даже Аристотелю, убедительно критиковавшему апорию Зенона. Аристотель справедливо указывал, что отрезок времени нельзя считать суммой неких неделимых изолированных моментов, однако многие учёные считают, что его подход не отличается глубиной и не опровергает наличие парадокса. Стоит отметить, что постановкой проблемы летящей стрелы Зенон стремился не опровергнуть возможность движения, как таковую, а выявить противоречия в идеалистических математических концепциях.

8. Парадокс Галилея

Галилео Галилей / © Wikimedia

В своём труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки» Галилео Галилей предложил парадокс, демонстрирующий любопытные свойства бесконечных множеств. Учёный сформулировал два противоречащих друг другу суждения. Первое: есть числа, представляющие собой квадраты других целых чисел, например 1, 9, 16, 25, 36 и так далее. Существуют и другие числа, у которых нет этого свойства — 2, 3, 5, 6, 7, 8, 10 и тому подобные. Таким образом, общее количество точных квадратов и обычных чисел должно быть больше, чем количество только точных квадратов. Второе суждение: для каждого натурального числа найдётся его точный квадрат, а для каждого квадрата существует целый квадратный корень, то есть, количество квадратов равно количеству натуральных чисел.

На основании этого противоречия Галилей сделал вывод, что рассуждения о количестве элементов применены только к конечным множествам, хотя позже математики ввели понятие, мощности множества — с его помощью была доказана верность второго суждения Галилея и для бесконечных множеств.

9. Парадокс мешка картофеля

© nieidealne-danie.blogspot.com

Допустим, у некоего фермера имеется мешок картофеля весом ровно 100 кг. Изучив его содержимое, фермер обнаруживает, что мешок хранился в сырости — 99% его массы составляет вода и 1% остальные вещества, содержащиеся в картофеле. Он решает немного высушить картофель, чтобы содержание воды в нём снизилось до 98% и переносит мешок в сухое место. На следующий день оказывается, что, один литр (1 кг) воды действительно испарился, но вес мешка уменьшился со 100 до 50 кг, как такое может быть? Давайте посчитаем — 99% от 100 кг это 99 кг, значит соотношение массы сухого остатка и массы воды изначально было равно 1/99. После сушки вода насчитывает 98% от общей массы мешка, значит соотношение массы сухого остатка к массе воды теперь составляет 1/49. Так как масса остатка не изменилась, оставшаяся вода весит 49 кг.

Конечно, внимательный читатель сразу обнаружит грубейшую математическую ошибку в расчётах — мнимый шуточный «парадокс мешка картофеля» можно считать отличным примером того, как с помощью на первый взгляд «логичных» и «научно подкреплённых» рассуждений можно буквально на пустом месте выстроить теорию, противоречащую здравому смыслу.

10. Парадокс воронов

Карл Густав Гемпель / © Wikimedia

Проблема также известна, как парадокс Гемпеля — второе название она получила в честь немецкого математика Карла Густава Гемпеля, автора её классического варианта. Проблема формулируется довольно просто: каждый ворон имеет чёрный цвет. Из этого следует, что всё, что не чёрного цвета, не может быть вороном. Этот закон называется логическая контрапозиция, то есть если некая посылка «А» имеет следствие «Б», то отрицание «Б» равнозначно отрицанию «А». Если человек видит чёрного ворона, это укрепляет его уверенность, что все вороны имеют чёрный окрас, что вполне логично, однако в соответствии с контрапозицией и принципом индукции, закономерно утверждать, что наблюдение предметов не чёрного цвета (скажем, красных яблок) также доказывает, что все вороны окрашены в чёрный цвет. Иными словами — то, что человек живёт в Санкт-Петербурге доказывает, что он живёт не в Москве.

С точки зрения логики парадокс выглядит безукоризненно, однако он противоречит реальной жизни — красные яблоки никоим образом не могут подтверждать тот факт, что все вороны чёрного цвета.

www.factroom.ru

Что такое Парадокс

Парадокс – это термин (слово), которым принято называть определенное утверждение или концепцию, содержащую в себе противоречивый смысл. В логике, парадокс – это определенное утверждение, которое буквально противоречит самому себе.

Что такое ПАРАДОКС – значение, определение простыми словами.

Простыми словами, Парадокс – это слово, коим принято называть на первый взгляд глупое, абсурдное и противоречивое утверждение, которое в то же время вполне может оказаться верным. Другими словами, можно сказать, что парадокс – это когда что-то кажется очень маловероятным с точки зрения логики, но все же это факт.

Происхождение (этимология) термина Парадокс.

Слово Парадокс происходит от греческого «paradoxos», что буквально переводится как: «вопреки ожиданиям», «вопреки существующим убеждениям» или «вопреки устоявшимся мнениям».

В чем заключается суть парадоксов?

Проще всего, для того чтобы понять, что такое парадоксы и в чем заключается их суть, необходимо рассмотреть несколько простых и банальных примеров. Возьмем к примеру, всем знакомую операционную систему Windows. В данной операционке, для того чтобы выключить компьютер, необходимо зайти в меню «ПУСК» и там нажать на кнопку — «Завершение работы». В данном случае, суть парадокса заключается в том, что, для того чтобы отключить компьютер, нам изначально нужно нажать на кнопку «ПУСК».

Еще одним примером, хорошего логического парадокса может послужить следующее простое утверждение: «Я всегда вру». Если вдуматься в эту фразу, то возникают закономерные вопросы типа:

  • Если человек сказавший эту фразу, действительно всегда врет, то он солгал о том, что он всегда лжет, и это является правдой?
  • Но если это правда, то почему человек утверждает, что он всегда лжет. Это ведь будет вранье?

В итоге, из данного примера логического парадокса можно сделать нехитрый вывод: Если это правда – то это неправда».

Лучшие логические парадоксы, которые заставят пошевелить мозгом:

Ахиллес и черепаха — Парадокс Зенона.

Парадокс Ахилла и Черепахи является одним из ряда теоретических дискуссий о движении, выдвинутых греческим философом Зеноном Элейским в 5 веке до нашей эры. Все начинается с того, что великий герой Ахиллес, решает соревноваться с черепахой в беге. Для справедливости, он соглашается дать черепахе преимущество в 500 метров. Когда начинается гонка, неудивительно, что Ахиллес начинает бежать со скоростью, намного превышающей скорость черепахи. К тому времени, когда он достиг отметки в 500 метров, черепаха прошла только на 50 метров дальше него. К тому времени, когда Ахиллес достиг отметки 550 метров, черепаха прошла еще 5 метров. Далее, когда он достиг отметки 555 метров, черепаха прошла еще 0,5 м. Затем 0,25 м., затем 0,125 м. и так далее. Этот процесс продолжается снова и снова до бесконечной серии все меньших и меньших расстояний. При этом, черепаха всегда движется вперед, а Ахиллес всегда играет в догонялки.

С точки зрения подобной логики, кажется, что Ахиллес никогда не сможет обогнать черепаху. Всякий раз, когда он достигает того места, где была черепаха, у него всегда будет какое-то расстояние, независимо от того, насколько маленьким он может быть. Но, в реальности, мы то знаем, что он запросто сможет обогнать черепаху. Хитрость парадокса заключается в том, что не стоит сосредотачиваться на расстояниях и количествах раз замера. Дело в том, что, следуя данной логике, любое конечное значение всегда можно разделить бесконечное число раз, независимо от того, насколько малыми могут быть его деления.

Карточный парадокс.

Представьте себе, что вы держите в руке условную карточку (листок бумаги). На одной стороне написано: «Утверждение на другой стороне этой карточки — истинно». Назовем это утверждение – «А». Переверните карточку. На этой стороне написано: «Утверждение на другой стороне этой карты является — ложным» (Утверждение Б). Однако попытка присвоить какую-либо истину утверждению «A» или «Б» приводит нас к парадоксу. Если «A» истинно, то «Б» также должно быть, но для «Б», чтобы быть истиной, «A» должно быть ложным. И наоборот, если «A» ложно, то «Б» тоже должно быть ложным, что в конечном итоге должно сделать «A» истинным.

Изобретенный британским логиком Филиппом Журденом в начале 1900-х годов, «Карточный парадокс» представляет собой простой вариант так называемого «парадокса лжеца», который мы упоминали в начале статьи.

Дихотомический парадокс.

Представь, что вы собираетесь пройтись по улице. Чтобы добраться до другого конца, сначала нужно пройти половину пути туда. И, чтобы пройти полпути туда, сначала нужно пройти четверть пути. Чтобы пройти четверть пути туда, сначала нужно пройти восьмую часть. Далее шестнадцатую, затем тридцать вторую, шестьдесят четвертую часть пути туда и так далее. В конечном счете, для выполнения даже самых простых задач, таких как хождение по улице, вам необходимо выполнить бесконечное количество небольших задач — что, по определению, совершенно невозможно. Независимо от того, насколько мала первая часть пути, она всегда может быть уменьшена вдвое, чтобы создать другую задачу. Единственный способ, при котором нельзя сократить расстояние вдвое, — это считать, что первая часть путешествия абсолютно не имеет расстояния. Но, если нам предстоит перемещение без расстояния, то мы даже не можем начать поход в назначенное место.

chto-takoe.net

Парадокс - это... Что такое Парадокс?

Парадо́кс (от др.-греч. παράδοξος — неожиданный, странный от др.-греч. παρα-δοκέω — кажусь) — ситуация (высказывание, утверждение, суждение или вывод), которая может существовать в реальности, но не имеет логического объяснения. Следует различать парадокс и апорию. Апория, в отличие от парадокса, является вымышленной, логически верной, ситуацией (высказыванием, утверждением, суждением или выводом), которая не может существовать в реальности.

В самом широком смысле под парадоксом понимают высказывание, которое расходится с общепринятым мнением и кажется нелогичным (зачастую лишь при поверхностном понимании). Парадокс, в отличие от афоризма, поражает неожиданностью. Например, уайльдовский «Разводы совершаются на небесах». Парадокс — это всегда полуправда и это, как говорил Оскар Уайльд, «лучшее, чего мы можем достичь, потому что абсолютных правд не существует». Парадокс своей стилизованной формой напоминает афоризм. В парадоксе привычная истина рушится на глазах и даже высмеивается. Например, «Я слышал столько клеветы в Ваш адрес, что у меня нет сомнений: Вы — прекрасный человек!» (О. Уайльд), «Взаимное непонимание — самая подходящая основа для брака» (О. Уайльд).

Парадоксальность — неожиданность, непривычность, оригинальность, противоречивость себе, исходным посылкам, общепринятому, традиционному взгляду или здравому смыслу по содержанию и/или по форме. Антонимом парадоксальности является ортодоксальность — проверенность, традиционность. «Ортодоксальный» — буквально «следующий господствующей традиции».

Парадоксы в логике

Логический парадокс — это противоречие, имеющее статус логически корректного вывода и, вместе с тем, представляющее собой рассуждение, приводящее к взаимно исключающим заключениям. Логическая ошибка парадокса в отличие от паралогизма и софизма не обнаружена пока из-за несовершенства существующих методов логики[прояснить]. Различаются такие разновидности логических парадоксов, как апория и антиномия. Апория характеризуется наличием аргумента, противоречащего очевидному, общепринятому мнению, здравому смыслу. Антиномия — наличием двух противоречащих друг другу, одинаково доказуемых суждений.

Парадоксы в науке

Современные науки, использующие логику в качестве инструмента познания, нередко наталкиваются на теоретические противоречия либо на противоречия теории опыту. Это бывает обусловлено неверной аксиоматизацией теорий, логическими ошибками в построении суждений, несовершенством существующих в настоящее время научных методов или недостаточной точностью используемых в опытах инструментов.

Наличие парадокса стимулирует к новым исследованиям, более глубокому осмыслению теории, её «очевидных» постулатов и нередко приводит к полному её пересмотру. Примерами парадоксов в науке могут служить Парадокс Рассела, Парадокс Банаха — Тарского, Парадокс Гараи, Парадокс Смейла, Парадокс Хаусдорфа, ЭПР-парадокс

Парадоксы в искусстве

Парадокс как художественный приём

Парадоксальность — чрезвычайно распространённое качество, присущее произведениям самых разных жанров искусства. В силу своей необычности парадоксальные высказывания, названия, содержания произведений неизменно привлекают к себе внимание людей. Это широко используется в разговорном жанре, в театральном и цирковом искусствах, в живописи и фольклоре. Хороший оратор обязательно использует этот приём в своих выступлениях для поддержания живого интереса слушателей. Комизм большинства анекдотов заключается в описании необычной, оригинальной ситуации. Популярная детская «поэзия нелепостей» Льюиса Кэрролла и Корнея Чуковского также построена на этом художественном приёме.

Парадоксальны многие афоризмы известных мыслителей. Напр., высказывания Вольтера: «Ваше мнение мне глубоко враждебно, но за ваше право его высказать я готов пожертвовать своей жизнью» или Ницше: «Нищих надобно удалять — неприятно давать им и неприятно не давать им», Фрумкера: «Мужчина от женщины отличается тем, что перед совершением ошибки он всё тщательно продумывает». Парадоксальностью отличаются и афоризмы Козьмы Пруткова, Бернарда Шоу.

Парадокс в музыке

В классической музыке парадоксом принято называть изысканные, странные произведения или фрагменты, отличающиеся от традиционного звучания. Также парадоксами в древней Греции называли победителей в олимпийских состязаниях певцов и исполнителей инструментальной музыки.

См. также

Литература

  • Энциклопедический словарь Брокгауза и Ефрона
  • Большая советская энциклопедия в 30 томах
  • Большой энциклопедический словарь
  • Большой энциклопедический словарь «Математика»
  • Анисов А. М. Логика. Парадоксы. Наука. // Противоположности и парадоксы (методологический анализ) М., 2008. С. 156—188.
  • Бочвар Д. А. К вопросу о парадоксах математической логики и теории множеств. // Математический сборник. 1944. Т. 15 (57). Вып. 3. С. 369—384.
  • Бочвар Д. А. К вопросу о парадоксах и к проблеме расширенного исчисления предикатов // Математический сборник. 1957. Вып. 1. № 42 (84). С. 3-10.
  • Грязнов А. Ф. «Скептический парадокс» и пути его преодоления // Вопросы философии. 1989. № 12. С. 140—150.
  • Драгалина-Черная Е. Г. Путь к очевидности: парадокс и докса // Противоположности и парадоксы (методологический анализ) М., 2008. С. 234—242.
  • Казаков А. Н., Якушев А. О. Логика-I. Парадоксология. Ижевск: Изд-во Удмуртского университета, 1998. 320 с. ISBN 5-7029-0274-2
  • Козлова М. С. Джон. Уиздом. Концепция философских парадоксов // История философии. № 1. М., 1997. С. 111—120.
  • Костюк В. Н. Парадоксы: логико-семантический анализ // Системные исследования. Ежегодник-1979. М., 1979. С. 344—357.
  • Краснопольская А. П. Роль парадоксов в дискуссионных моделях образования // Противоположности и парадоксы (методологический анализ) М., 2008. С. 392—412.
  • Крушинский А. А. Парадоксы ГСЛ как рефлексия над спецификой китайского обобщения // Противоположности и парадоксы (методологический анализ). М., 2008. С. 205—215.
  • Майданов А. С. Коаны чань-буддизма как парадоксы // Противоположности и парадоксы (методологический анализ) М., 2008. С. 318—353.
  • Новосёлов М. М. Аргументы от абстракции и парадоксы (интервальный подход) // Противоположности и парадоксы (методологический анализ) М., 2008. С. 243—286.
  • Панфилов В. С. Парадоксы Дао дэ цзина // Петербургское востоковедение: Альманах. Выпуск 9. 1997. С. 436—446.
  • Пигулевский В. О. Символ, пародия и парадокс в неклассической философии // Эстетические категории и искусство. Кишинев, 1989. С. 115—135.
  • Секей Г. Парадоксы в теории вероятностей и математической статистике / пер. с англ. В. В. Ульянова под ред. В. В. Сазонова. М., 1990. 240 с., ил.
  • Смирнова Е. Д. К вопросу об анализе семантических парадоксов // Вестник МГУ. Сер. 8. Философия. 1993. № 5. С. 37—43.
  • Ханагов А. А. Существуют ли в формальной логике парадоксы? // Природа. 1978. № 10. С. 118—124.
  • Хлебалин А. В. Проблема основания и условия решения парадокса Крипке // Философия: история и современность. 2004—2005. Сб. науч. тр. Новосибирск; Омск, 2005. С. 3—13.
  • Черепанов С. К. Основания и парадоксы: новый подход к решению проблемы логического обоснования математики. Красноярск, 1995.
  • Чупахин И. Я. Теория понятия и парадоксы // Вестник Ленинградского университета. Серия Экономика, философия, право. 1975. № 5. Вып. 1. С. 55-63.
  • Шалак В. И. Против апорий // Противоположности и парадоксы (методологический анализ) М., 2008. С. 189—204.
  • Butzenberger Klaus. Some general remarks on negation and paradox in Chinese logic // Journal of Chinese Philosophy 20: 313—347 (1993).
  • Chung-Ying Cheng. On Zen (Ch’an) Language and Zen Paradoxes // Journal of Chinese Philosophy. V. 1 (1973). P. 77—102.

dic.academic.ru

Что такое парадокс? Примеры парадоксов и их виды

В статье рассказывается о том, что такое парадокс, приводятся их примеры и рассматриваются наиболее частые их разновидности.

Парадокс

С развитием науки в ней появились такие направления, как, к примеру, логика и философия. Относятся они к ряду гуманитарных, и на первый взгляд может показаться, что в отличие от дисциплин, которые изучают окружающий нас мир (биология, физика, химия), они не столь значимы. Однако это не так. Правда, у людей наиболее часто эти дисциплины ассоциируются с парадоксами различного рода, что отчасти верно. Но справедливости ради стоит упомянуть, что парадоксы как таковые встречаются и в иных областях науки. Так что такое парадокс и каким он может быть? В этом мы и разберемся.

Определение

Само слово «парадокс» произошло из древнегреческого языка. Что вполне логично, ведь именно времена Римской империи и Древней Греции считаются рассветом таких наук, как логика и философия, которые занимаются разбором парадоксов наиболее часто. Так что такое парадокс?

Понятие имеет несколько похожих определений. К примеру, в повседневном понимании парадокс - это ситуация, которая может существовать в реальности, но при этом совсем не иметь логического объяснения, или же суть его сильно затруднена для восприятия и размыта.

Если рассматривать значение данного слова в логике, то это формально-логическое противоречие, которое становится таковым в силу каких-то особых или необычных условий. Теперь мы знаем, что такое логические парадоксы.

Суть

Если рассматривать это понятие в широком смысле, то обычно под ним понимают суждения, высказывания и иные ситуации, которые сильно расходятся с привычным мнением и кажутся объективно или субъективно очень нелогичными. Правда, логика постепенно появляется, если начать разбирать предмет обсуждения более подробно. Но при этом важно помнить – в отличие от афоризма, парадокс поражает именно неожиданностью и четкой логической составляющей.

Но рассмотрим более подробно парадоксы в логике.

Логика

Если говорить кратко, то логический парадокс – это своеобразное противоречие, которое имеет форму конкретного, четкого и логически правильного вывода, но при этом оно представляет собой рассуждение, которое приводит к образованию двух или более заключений, исключающих друг друга. Так что теперь мы знаем, что такое парадокс.

Существуют также несколько разновидностей логических парадоксов - апория и антиномия.

Последняя характеризуется наличием двух суждений, которые противоречат друг другу, но при этом оба они одинаково доказуемы.

Апория же выражается наличием аргумента или нескольких аргументов, которые сильно противоречат здравому смыслу, привычному мнению общественности или чему-то еще очевидному. И аргументы эти являются четкими и доказуемыми.

Наука

В науках, которые используют логику в качестве одного из инструментов познания, порой происходят ситуации, когда исследователи наталкиваются на противоречия теоретического рода или же противоречия, которые появились из следствия теории с вербальным, практическим результатом того или иного опыта. Правда, подобное не всегда является парадоксом в чистом виде, иногда такое происходит в результате обычных ошибок, несовершенства нынешних знаний, методов их получения или неточности инструментов.

Тем не менее наличие парадокса всегда являлось дополнительным стимулом того, чтобы более детально разобраться в кажущейся очевидной теории и некоторых ее якобы очевидных доказательствах. Иногда это приводило к тому, что даже устоявшиеся и четкие теории подвергались полному пересмотрению. Теперь мы знаем суть такой вещи, как парадокс. Примеры некоторые рассмотрим чуть ниже.

Фотометрический парадокс

Он относится к разряду космологических. Смысл его заключается в вопросе о том, почему ночью темно, если все бесконечное космическое пространство наполнено излучающими свет звездами? Если это так, то тогда в каждой точке ночного неба обязательно будет какое-то далекое светило, и оно будет точно не черным.

Правда, данный парадокс со временем был решен. Для этого нужно учесть конечный возраст Вселенной и конечность скорости света, а значит, часть Вселенной, что доступна для просмотра, обязательно будет ограничена так называемым горизонтом частиц.

В логике и философии

Подобные парадоксы жизни встречались многим людям, как в повседневных размышлениях, так и в различных книгах и учебниках. К примеру, одним из наиболее популярных является парадокс Бога. Ведь если допускать, что он всемогущ, то способен ли он создать камень, который сам же и не сможет сдвинуть с места?

Второй, тоже встречающийся очень часто, основан на философии. Смысл его в том, что люди почти никогда не ценят то, что имеют, а ценить начинают лишь после потери.

Как видим, парадоксы – это очень многогранные явления, которые есть в различных областях науки и жизни.

fb.ru

Что такое парадокс? Примеры парадоксов и их виды

В статье рассказывается о том, что такое парадокс, приводятся их примеры и рассматриваются наиболее частые их разновидности.

Парадокс

С развитием науки в ней появились такие направления, как, к примеру, логика и философия. Относятся они к ряду гуманитарных, и на первый взгляд может показаться, что в отличие от дисциплин, которые изучают окружающий нас мир (биология, физика, химия), они не столь значимы. Однако это не так. Правда, у людей наиболее часто эти дисциплины ассоциируются с парадоксами различного рода, что отчасти верно. Но справедливости ради стоит упомянуть, что парадоксы как таковые встречаются и в иных областях науки. Так что такое парадокс и каким он может быть? В этом мы и разберемся.

Определение

Само слово «парадокс» произошло из древнегреческого языка. Что вполне логично, ведь именно времена Римской империи и Древней Греции считаются рассветом таких наук, как логика и философия, которые занимаются разбором парадоксов наиболее часто. Так что такое парадокс?

Понятие имеет несколько похожих определений. К примеру, в повседневном понимании парадокс - это ситуация, которая может существовать в реальности, но при этом совсем не иметь логического объяснения, или же суть его сильно затруднена для восприятия и размыта.

Если рассматривать значение данного слова в логике, то это формально-логическое противоречие, которое становится таковым в силу каких-то особых или необычных условий. Теперь мы знаем, что такое логические парадоксы.

Суть

Если рассматривать это понятие в широком смысле, то обычно под ним понимают суждения, высказывания и иные ситуации, которые сильно расходятся с привычным мнением и кажутся объективно или субъективно очень нелогичными. Правда, логика постепенно появляется, если начать разбирать предмет обсуждения более подробно. Но при этом важно помнить – в отличие от афоризма, парадокс поражает именно неожиданностью и четкой логической составляющей.

Но рассмотрим более подробно парадоксы в логике.

Логика

Если говорить кратко, то логический парадокс – это своеобразное противоречие, которое имеет форму конкретного, четкого и логически правильного вывода, но при этом оно представляет собой рассуждение, которое приводит к образованию двух или более заключений, исключающих друг друга. Так что теперь мы знаем, что такое парадокс.

Существуют также несколько разновидностей логических парадоксов - апория и антиномия.

Последняя характеризуется наличием двух суждений, которые противоречат друг другу, но при этом оба они одинаково доказуемы.

Апория же выражается наличием аргумента или нескольких аргументов, которые сильно противоречат здравому смыслу, привычному мнению общественности или чему-то еще очевидному. И аргументы эти являются четкими и доказуемыми.

Наука

В науках, которые используют логику в качестве одного из инструментов познания, порой происходят ситуации, когда исследователи наталкиваются на противоречия теоретического рода или же противоречия, которые появились из следствия теории с вербальным, практическим результатом того или иного опыта. Правда, подобное не всегда является парадоксом в чистом виде, иногда такое происходит в результате обычных ошибок, несовершенства нынешних знаний, методов их получения или неточности инструментов.

Тем не менее наличие парадокса всегда являлось дополнительным стимулом того, чтобы более детально разобраться в кажущейся очевидной теории и некоторых ее якобы очевидных доказательствах. Иногда это приводило к тому, что даже устоявшиеся и четкие теории подвергались полному пересмотрению. Теперь мы знаем суть такой вещи, как парадокс. Примеры некоторые рассмотрим чуть ниже.

Фотометрический парадокс

Он относится к разряду космологических. Смысл его заключается в вопросе о том, почему ночью темно, если все бесконечное космическое пространство наполнено излучающими свет звездами? Если это так, то тогда в каждой точке ночного неба обязательно будет какое-то далекое светило, и оно будет точно не черным.

Правда, данный парадокс со временем был решен. Для этого нужно учесть конечный возраст Вселенной и конечность скорости света, а значит, часть Вселенной, что доступна для просмотра, обязательно будет ограничена так называемым горизонтом частиц.

В логике и философии

Подобные парадоксы жизни встречались многим людям, как в повседневных размышлениях, так и в различных книгах и учебниках. К примеру, одним из наиболее популярных является парадокс Бога. Ведь если допускать, что он всемогущ, то способен ли он создать камень, который сам же и не сможет сдвинуть с места?

Второй, тоже встречающийся очень часто, основан на философии. Смысл его в том, что люди почти никогда не ценят то, что имеют, а ценить начинают лишь после потери.

Как видим, парадоксы – это очень многогранные явления, которые есть в различных областях науки и жизни.

autogear.ru

Что такое парадокс? Примеры парадоксов и их виды

Образование 4 июня 2016

В статье рассказывается о том, что такое парадокс, приводятся их примеры и рассматриваются наиболее частые их разновидности.

Парадокс

С развитием науки в ней появились такие направления, как, к примеру, логика и философия. Относятся они к ряду гуманитарных, и на первый взгляд может показаться, что в отличие от дисциплин, которые изучают окружающий нас мир (биология, физика, химия), они не столь значимы. Однако это не так. Правда, у людей наиболее часто эти дисциплины ассоциируются с парадоксами различного рода, что отчасти верно. Но справедливости ради стоит упомянуть, что парадоксы как таковые встречаются и в иных областях науки. Так что такое парадокс и каким он может быть? В этом мы и разберемся.

Определение

Само слово «парадокс» произошло из древнегреческого языка. Что вполне логично, ведь именно времена Римской империи и Древней Греции считаются рассветом таких наук, как логика и философия, которые занимаются разбором парадоксов наиболее часто. Так что такое парадокс?

Понятие имеет несколько похожих определений. К примеру, в повседневном понимании парадокс - это ситуация, которая может существовать в реальности, но при этом совсем не иметь логического объяснения, или же суть его сильно затруднена для восприятия и размыта.

Если рассматривать значение данного слова в логике, то это формально-логическое противоречие, которое становится таковым в силу каких-то особых или необычных условий. Теперь мы знаем, что такое логические парадоксы.

Суть

Если рассматривать это понятие в широком смысле, то обычно под ним понимают суждения, высказывания и иные ситуации, которые сильно расходятся с привычным мнением и кажутся объективно или субъективно очень нелогичными. Правда, логика постепенно появляется, если начать разбирать предмет обсуждения более подробно. Но при этом важно помнить – в отличие от афоризма, парадокс поражает именно неожиданностью и четкой логической составляющей.

Но рассмотрим более подробно парадоксы в логике.

Логика

Если говорить кратко, то логический парадокс – это своеобразное противоречие, которое имеет форму конкретного, четкого и логически правильного вывода, но при этом оно представляет собой рассуждение, которое приводит к образованию двух или более заключений, исключающих друг друга. Так что теперь мы знаем, что такое парадокс.

Существуют также несколько разновидностей логических парадоксов - апория и антиномия.

Последняя характеризуется наличием двух суждений, которые противоречат друг другу, но при этом оба они одинаково доказуемы.

Апория же выражается наличием аргумента или нескольких аргументов, которые сильно противоречат здравому смыслу, привычному мнению общественности или чему-то еще очевидному. И аргументы эти являются четкими и доказуемыми.

Наука

В науках, которые используют логику в качестве одного из инструментов познания, порой происходят ситуации, когда исследователи наталкиваются на противоречия теоретического рода или же противоречия, которые появились из следствия теории с вербальным, практическим результатом того или иного опыта. Правда, подобное не всегда является парадоксом в чистом виде, иногда такое происходит в результате обычных ошибок, несовершенства нынешних знаний, методов их получения или неточности инструментов.

Тем не менее наличие парадокса всегда являлось дополнительным стимулом того, чтобы более детально разобраться в кажущейся очевидной теории и некоторых ее якобы очевидных доказательствах. Иногда это приводило к тому, что даже устоявшиеся и четкие теории подвергались полному пересмотрению. Теперь мы знаем суть такой вещи, как парадокс. Примеры некоторые рассмотрим чуть ниже.

Фотометрический парадокс

Он относится к разряду космологических. Смысл его заключается в вопросе о том, почему ночью темно, если все бесконечное космическое пространство наполнено излучающими свет звездами? Если это так, то тогда в каждой точке ночного неба обязательно будет какое-то далекое светило, и оно будет точно не черным.

Правда, данный парадокс со временем был решен. Для этого нужно учесть конечный возраст Вселенной и конечность скорости света, а значит, часть Вселенной, что доступна для просмотра, обязательно будет ограничена так называемым горизонтом частиц.

В логике и философии

Подобные парадоксы жизни встречались многим людям, как в повседневных размышлениях, так и в различных книгах и учебниках. К примеру, одним из наиболее популярных является парадокс Бога. Ведь если допускать, что он всемогущ, то способен ли он создать камень, который сам же и не сможет сдвинуть с места?

Второй, тоже встречающийся очень часто, основан на философии. Смысл его в том, что люди почти никогда не ценят то, что имеют, а ценить начинают лишь после потери.

Как видим, парадоксы – это очень многогранные явления, которые есть в различных областях науки и жизни.

Источник: fb.ru

monateka.com


Смотрите также