Компенсатор реактивной мощности что это такое


Для чего нужна компенсация реактивной мощности и как она реализуется

Электрооборудование во время работы потребляет энергию. При этом полная мощность состоит из двух составляющих: активная и реактивная. Реактивная мощность не выполняет полезной работы, но вносит в цепь дополнительные потери. Поэтому её стремятся снизить, для чего и приходят к различным техническим решениям для компенсации реактивной мощности в электрических сетях. В этой статье мы рассмотрим, что это такое и для чего нужно компенсирующее устройство.

Определение

Полная электрическая мощность состоит из активной и реактивной энергии:

S=Q+P

Здесь Q – реактивная, P – активная.

Реактивная мощность возникает в магнитных и электрических полях, которые характерны для индуктивной и емкостной нагрузки при работе в цепях переменного тока. При работе активной нагрузки, фазы напряжения и тока одинаковы и совпадают. При подключении индуктивной нагрузки – напряжение отстает от тока, а при емкостной – опережает.

Косинус угла сдвига между этими фазами называется коэффициентом мощности.

cosФ=P/S

P=S*cosФ

Косинус угла всегда меньше единицы, соответственно активная мощность всегда меньше полной. Реактивный ток протекает в обратном направлении относительно активного и препятствует его прохождению. Так как по проводам протекает ток полной нагрузки:

S=U*I

То и при разработке проектов линий электропередач нужно учитывать потребление активной и реактивной энергии. Если последней будет слишком много, то придется увеличивать сечение линий, что ведет к дополнительным затратам. Поэтому с ней борются. Компенсация реактивной мощности снижает нагрузку на сети и экономит электроэнергию промышленных предприятий.

Где важно учитывать косинус Фи

Давайте разберемся, где и когда нужна компенсация реактивной мощности. Для этого нужно проанализировать её источники.

Примером основной реактивной нагрузки являются:

  • электрические двигатели, коллекторные и асинхронные, особенно если в рабочем режиме его нагрузка мала для конкретного двигателя;
  • электромеханические исполнительные механизмы (соленоиды, клапана, электромагниты);
  • электромагнитные коммутационные приборы;
  • трансформаторы, особенно на холостом ходу.

На графике изображено изменение cosФ электродвигателя при изменении нагрузки.

Основу электрохозяйства большинства промышленных предприятий составляет электропривод. Отсюда и высокое потребление реактивной мощности. Частные потребители не оплачивают её потребление, а предприятия оплачивают. Это вызывает дополнительные затраты, от 10 до 30% и более от общей суммы счета за электроэнергию.

Виды компенсаторов и их принцип действия

В целях снижения реактива используют устройства компенсации реактивной мощности, т.н. УКРМ. В качестве компенсатора мощности на практике используют чаще всего:

  • батареи конденсаторов;
  • синхронные двигатели.

Так как в течении времени количество реактивной мощности может изменяться, значит и компенсаторы могут быть:

  1. Нерегулируемые – обычно конденсаторная батарея без возможности отключения отдельных конденсаторов для изменения емкости.
  2. Автоматические – ступени компенсации изменяются в зависимости от состояния сети.
  3. Динамические – компенсируют, когда нагрузка быстро изменяет свой характер.

В схеме используется, в зависимости от количества реактивной энергии от одного до целой батареи конденсаторов, которые можно вводить и выводить из цепи. Тогда и управление может быть:

  • ручным (автоматические выключатели);
  • полуавтоматическим (кнопочные посты с контакторами);
  • неуправляемыми, тогда они подсоединены напрямую к нагрузке, включаются и отключаются вместе с ней.

Конденсаторные батареи могут устанавливаться как на подстанциях, так и непосредственно возле потребителей, тогда устройство подключается к их кабелям или шинам питания. В последнем случае обычно рассчитываются на индивидуальную компенсацию реактива конкретного двигателя или другого прибора – часто встречается на оборудовании в электрических сетях 0,4 кВ.

Централизованная компенсация выполняется либо на границе балансового раздела сетей, либо на подстанции, при чем может выполняться в высоковольтных сетях 110 кВ. Хороша тем, что разгружает высоковольтные линии, но плохо то, что не разгружаются линии 0,4 кВ и сам трансформатор. Этот способ дешевле остальных. При этом можно и централизованно разгрузить и низкую сторону 0,4 кВ, тогда УКРМ подключается к шинам, к которым подключена вторичная обмотка трансформатора, соответственно разгружается и он.

Также может быть и вариант групповой компенсации. Это промежуточный вид между централизованным и индивидуальным.

Другой способ – компенсация синхронными двигателями, которые могут компенсировать реактивную мощность. Проявляется, когда двигатель работает в режиме перевозбуждения. Такое решение используется в сетях 6 кВ и 10 кВ, также встречается и до 1000В. Преимуществом этого метода перед установкой конденсаторных батарей – возможность использования компенсатора для совершения полезной работы (вращения мощных компрессоров и насосов, например).

На графике изображена U-образная характеристика синхронного двигателя, которая отражает зависимость тока статора от тока возбуждения. Под ней вы видите, чему равен косинус фи. Когда он больше нуля – двигатель имеет емкостной характер, а когда косинус меньше нуля – нагрузка является емкостной и компенсирует реактивную мощность остальной части индуктивных потребителей.

Заключение

Подведем итоги, перечислив основные тезисы о компенсации реактивной энергии:

  • Назначение – разгрузка линий электропередач и электрических сетей предприятий. В состав устройства могут входить антирезонансные дроссели для уменьшения уровня гармоник в сети.
  • За неё не уплачивают счета частные лица, но платят предприятия.
  • В состав компенсатора входят батареи конденсаторов или в этих же целях используют синхронные машины.

Также рекомендуем просмотреть полезные видео по теме статьи:

Материалы по теме:

samelectrik.ru

Компенсатор реактивной мощности

Известно, что электрическая энергия состоит из двух частей: активной и реактивной. Первая преобразуется в различные виды полезной энергии (тепловую, механическую и пр.), вторая – создаёт электромагнитные поля в нагрузке (трансформаторы, электродвигатели, дроссели, индукционные печи, осветительные приборы). Несмотря на необходимость реактивной энергии для работы указанного оборудования, она дополнительно нагружает электросеть, увеличивая потери активной составляющей. Это приводит к тому, что промышленный потребитель принужден дважды платить за одну и ту же энергию. Сначала по счётчику реактивной энергии и ещё раз косвенно, как потери активной составляющей, фиксируемые прибором учёта активной энергии.

Для решения этой задачи (уменьшение реактивной части энергии) были разработаны и сегодня широко используются во всём мире установки компенсации реактивной мощности. Они снижают значения потребляемой мощности за счёт выработки реактивной составляющей непосредственно у потребителя и бывают двух видов: индуктивными и емкостные. Индуктивные реакторы, обычно, применяют для компенсации наведённой емкостной составляющей (например, большая протяженность воздушных линий электропередачи и т.п.). Конденсаторные батареи применяются для нейтрализации индуктивной составляющей реактивной мощности (индуктивные печи, асинхронные двигатели и др.).

Компенсатор реактивной энергии позволяет: - уменьшить потери мощности и снижение напряжения в различных участках электросети; - сократить количество реактивной энергии в распределительной сети (воздушные и кабельные линии), трансформаторах и генераторах; - снизить затраты на оплату потреблённой электрической энергии; - сократить влияние сетевых помех на работу оборудования;

- снизить асимметрию фаз.

Учитывая, что характер нагрузки в бытовых и промышленных сетях имеет преимущественно активно-индуктивный тип, наиболее широко распростанены как средство компенсации статические конденсаторы. Их основными достоинствами являются: - малые потери активной энергии (в рамках 0,3-0,45 кВт/100квар); - незначительная масса конденсаторной установки не требует фундамента; - несложная и недорогая эксплуатация; - увеличение или уменьшение количества конденсаторов в зависимости от ситуации; - компактность, дающая возможность монтажа установки в любом месте (у электроустановок, группой в цеху или крупной батареей). При этом наилучший эффект получается при размещении установки непосредственно в трансформаторной подстанции и подключении к шинам низкой стороны (0,4 кВ). В этом случае компенсируются сразу все индуктивные нагрузки, запитанные от данной ТП; - независимость работоспособности установки от поломки отдельного конденсатора.

Конденсаторные установки с фиксированным значением мощности применяют в трёхфазных сетях переменного тока. В зависимости от типа нерегулируемые установки имеют мощность 2,5 – 100 кВАр на низком напряжении.

Ручная регулировка количества конденсаторов не всегда удобна и не успевает за изменением ситуации на производстве, поэтому всё чаще новые производства приобретают для компенсации реактивной энергии автоматические установки. Регулируемые компенсаторы повышают и автоматически корректируют cos φ на низком напряжении (0,4 кВ). Кроме поддержания установленного коэффициента мощности в часы минимальных и максимальных нагрузок, установки устраняют режим генерации реактивной энергии, а также: - постоянно отслеживают изменение количества реактивной мощности в компенсируемой цепи; - исключают перекомпенсацию и её следствие – перенапряжение в сети; - проводят мониторинг главных показателей компенсируемой сети; - проверяют работу всех составляющих компенсаторной установки и режим её работы. При этом оптимизируется распределение нагрузки в сети, что снижает износ контакторов.

В регулируемых компенсаторных установках предусматривается система отключения при возникновении аварийной ситуации с одновременным оповещением обслуживающих специалистов. В некоторых моделях также предусматривается система поддержания нормальной температуры, включающая автоматический обогрев или вентиляцию установки.

none Опубликована: 2011 г. 1 Вознаградить Я собрал 0 0

x

  • Техническая грамотность
  • Актуальность материала
  • Изложение материала
  • Полезность устройства
  • Повторяемость устройства
  • Орфография

0

Средний балл статьи: 0 Проголосовало: 0 чел.

cxem.net

Компенсатор реактивной мощности

Спасибо за интерес, проявленный к нашей Компании

Компенсатор реактивной мощности (КРМ)

Компенсатор Реактивной Мощности (КРМ) является одним из видов электроустановочного оборудования, снижающий значения полной мощности, и в зависимости от природы реактивной мощности может быть как индуктивного характера (индуктивный реактор) так и емкостного (конденсатор).

Индуктивные реакторы используют, как правило, для компенсации емкостной составляющей мощности (линий электропередач большой протяженности).

Конденсаторные батареи используют для компенсации реактивной составляющей индуктивной мощности, что ведет к снижению полной мощности (печи индуктивности).

Одним из факторов, приводящие к возникновению потерь в электрических сетях промышленных предприятий является реактивная составляющая протекающего тока при наличии индуктивной нагрузки (нагрузка в промышленных и бытовых электросетях носит обычно активно-индуктивный характер). Соответственно, из электрической сети происходит потребление как активной, так и реактивной энергии.

Активная энергия преобразуется в полезную – механическую, тепловую и пр. энергии. Реактивная энергия расходуется на создание электромагнитных полей в электродвигателях, трансформаторах, индукционных печах, сварочных трансформаторах, дросселях и осветительных приборах.

Реактивная энергия может производиться непосредственно в месте потребления.

Уменьшение реактивной составляющей в общей мощности электроэнергии широко распространена во всем мире и известна под термином компенсация реактивной мощности (КРМ) - одного из наиболее эффективных средств обеспечения рационального использования электроэнергии.

КРМ позволяет:

  • разгрузить от реактивного тока распределительные сети (распределительные устройства, кабельные и воздушные линии), трансформаторы и генераторы;
  • снизить потери мощности и падение напряжения в элементах систем электроснабжения;
  • сократить расходы на электроэнергию;
  • ограничить влияние высших гармоник и сетевых помех;
  • уменьшить асимметрию фаз.

Регулируемые компенсаторы реактивной мощности КРМ

Автоматическая установка компенсации реактивной мощности (АУКРМ) предназначена для повышения и автоматического регулирования коэффициента мощности (cos φ) электроустановок промышленных предприятий и распределительных сетей напряжением 0,4 кВ частоты 50 Гц.

Установки обеспечивают поддержание заданного коэффициента мощности в часы максимальных и минимальных нагрузок, исключают режим генерации реактивной мощности, а также:

  • автоматически отслеживает изменение реактивной мощности нагрузки в компенсируемой сети и, в соответствии с заданным значением cos φ исключается генерация реактивной мощности в сеть;
  • исключается появление в сети перенапряжения, потому что отсутствует перекомпенсация, которая возможна при использовании нерегулируемых конденсаторных установок;
  • визуально отслеживаются все основные параметры компенсируемой сети;
  • контролируется режим эксплуатации и работа всех элементов конденсаторной установки, при этом учитывается время работы и количество подключений каждой секции, что позволяет оптимизировать износостойкость контакторов и распределения нагрузки в сети;
  • предусмотрена система аварийного отключения конденсаторной установки и предупреждения обслуживающего персонала;
  • возможно автоматическое подключение принудительного обогрева или вентиляции конденсаторной установки.

Нерегулируемые компенсаторы реактивной мощности КРМ

Установка компенсации реактивной мощности (компенсатор реактивной мощности УКРМ) с фиксированным значением мощности улучшает cos φ, путем включения конденсатора.

Предназначена она для поддержания коэффициента мощности в распределительных сетях трёхфазного переменного тока. Нерегулируемые конденсаторные установки низкого напряжения типа УКРМ выпускаются мощностью от 2,5 до 100 кВАр.

Также позволяют снизить затраты на оплату электроэнергии. Нерегулируемые установки компенсации реактивной мощности рассчитаны на эксплуатацию в закрытых производственных помещениях при нормальных условиях эксплуатации в районах с умеренным и холодным климатом.

Срок окупаемости Компенсатора Реактивной Мощности от года до двух лет. Применение КРМ производства конденсаторного завода «Нюкон» снижает потребление активной энергии в среднем на 2-5% и исключает платежи за реактивную энергию. При высоком качестве данных устройств цена остается доступной и привлекательной. Исходя из структуры себестоимости, конденсаторный завод «Нюкон» имеет возможность успешно конкурировать в цене с европейскими производителями, не теряя в качестве своей продукции.

Если Вы желаете купить компенсатор реактивной мощности КРМ или узнать цену на данное оборудование, позвоните по телефону указанному ниже или заполните приведенную форму. В этом случае, в ближайшее время мы с Вами свяжемся для уточнения особенностей Вашего проекта, необходимых для расчета стоимости компенсатора реактивной мощности КРМ

www.nucon.ru

УКРМ — установка компенсации реактивной мощности

Нагрузка предприятий подразделяется на активную, индуктивную и емкостную, все эти виды мощностей зависят от типа работающего оборудования.

Существование реактивной энергии несет отрицательное воздействие на электрические сети, создает электромагнитные поля в электрических устройствах.

Существование реактивного тока создает дополнительную нагрузку, приводящую к снижению качества электроэнергии, влекущую увеличение сечений токовых проводников.

Назначение устройства компенсации реактивной мощности

Рис. Внешний вид УКРМ 6(10) кВ

Основным предназначением устройства является снижение действия реактивной мощности, служит для увеличения и поддержания на определенном нормативном уровне величины коэффициента мощности в трехфазных распределительных сетях. Главное предназначение УКРМ, является аккумуляция в конденсаторах реактивной мощности. Это действие помогает разгрузить электрическую сеть от перетоков реактивной мощности, происходит стабилизация напряжения, увеличивается доля активной мощности.

Основные функции УКРМ

  1. Понижение потребляемого нагрузочного тока на 30-50%.
  2. Снижение составляющих элементов распределительной сети, увеличение их срока службы.
  3. Повышение надежности и пропускной способности электрической сети.
  4. Понижение тепловых потерь электрического тока.
  5. Снижение воздействия высших гармоник.
  6. Понижение несимметричности фаз, сглаживание сетевых помех.
  7. Снижение до минимума стоимости индуктивной мощности.

Установка компенсации реактивной мощности УКРМ отличается рядом преимуществ, обусловленных применением конденсаторов, дополненных третьим уровнем безопасности в виде полипропиленовой сегментируемой пленки пропитанной специальной жидкостью, обеспечивающих надежное использование, долговечность, невысокую стоимость при выполнении работ по техническому обслуживанию и ремонту.

Наличие в конденсаторной установке УКРМ специализированных тиристорных быстродействующих пускателей, работающих с опережением по времени для коммутации фазовых конденсаторов, срабатывающих при изменении cosφ, продляет время их безотказной работы.

Рис. Внешний вид тиристора для коммутации конденсаторных установок.

Для обеспечения регулирования cosj в автоматическом режиме с передачей информации на PC с контролем в сети высших гармоник тока и напряжения, применяются контроллеры с контакторным переключением.

Для повышения качества работы УКРМ в установке присутствует фильтр нечетных гармоник и устройства терморегуляции, для обнаружения неисправностей продумана система индикации.

Все оборудование помещается в блок-контейнер, снабженный вентиляцией и обогревом с автоматическим управлением. Устройства обеспечивают комфортное и удобное обслуживание при низких температурах до -60о С.

Модульный тип построения, способствует поэтапному наращиванию мощности УКРМ.

Защита конденсаторных установок

Для безопасной работы устройства предусмотрены защиты:

  1. Блокировки, обеспечивающие защиту от прикосновения к токоведущим частям, находящимся под напряжением.
  2. Защита, предохраняющая установку от короткого замыкания конденсатора.
  3. От превышения нормы электрического тока.
  4. От перенапряжения.
  5. От перекоса токов по фазам устройства.
  6. Электромагнитное блокирование, предохраняющее от ошибочного включения коммутационных аппаратов УКРМ.
  7. Механическое блокирование включения заземляющих ножей в работающей установке.
  8. Наличие контактного выключателя, отключающего установку при открывании дверей при включенном оборудовании.
  9. Тепловая защита, включающая принудительное охлаждение при повышении температуры конденсаторных батарей.
  10. Термодатчик включающий обогрев в установке при понижении температуры.

Достоинства устройства конденсаторной установки УКРМ

  1. Наличие трехфазных пожарозащищенных экологических конденсаторов.
  2. Применение в устройстве специальных предохранителей и разрядников сопротивления с обкладками из полимерной металлизированной пленки с минеральной пропиткой.
  3. Регуляторы реактивной мощности и цифровые анализаторы с дистанционным управлением.
  4. Для повышения сейсмоустойчивости и вибрационной стойкости применяются специальные полимерные изоляторы.

Типы УКРМ

Существуют несколько типов установок УКРМ, применяемых в сетях 6-10 кВ, это:

  1. Нерегулируемые установки, выполненные в модульном построении, состоящем из нескольких фиксированных ступеней,коммутация происходит в ручном режиме при отсутствии токов нагрузки.
  2. Автоматические или регулируемые, базовое устройство предназначено для автоматического регулирования ступеней, каждая из которых состоит из трех конденсаторов, соединенных в звезду, операции по осуществлению коммутационных действий производят автоматически с использованием электронного блока, определяющего мощность и время включения.
  3. Полуавтоматические установки применяются для снижения стоимости устройства компенсации реактивной мощности, цена становится доступной с одновременным сохранением качества работы устройства. Для этого в устройстве применяются, как регулированные ступени, так и фиксированные.
  4. Высоковольтные установки с фильтрами, применяемыми для защиты от нелинейных гармонических искажений защитных антирезонансных дросселей. Применяются такие установки совместно с устройствами, генерирующими явление в сети высших гармоник, это: устройства, обеспечивающие плавный пуск и частотные преобразователи.

Таблица №1 Типы конденсаторных установок с указанием мощности ступеней.

В модульных установках КРМ ступени конструктивно объединены в модуль

Особенности подключения УКРМ

Самым оптимальным подключением устройства компенсации реактивной мощности, является установка устройства в непосредственной близости к потребителю (индивидуальная компенсация). В этом случае, стоимость установки компенсации реактивной мощности, состоящая из суммы стоимости внедрения и дальнейшего обслуживания составляет значительную величину.

При объединении нагрузок в единый комплекс по потреблению реактивной мощности, целесообразно применять групповую компенсацию. В этом случае применение цена устройства реактивной мощности становится наиболее приемлемой при внедрении в работу, но менее выгодной для пользователей из-за понижения активных потерь, в электрической сети оказывающих влияние на экономию средств.

Возможно, подключение устройства КРМ в виде отдельного оборудования с индивидуальным кабельным вводом, так и в составе НКУ, к примеру, в составе главного распределительного щита.

Расчет УКРМ

Для выбора УКРМ производится подсчет полной суммарной мощности конденсаторных батарей электроустановки, по формуле:

Qc = Px (tg(1)-tg(ф2)).

Где Р – активная мощность электроустановки Показания (tg(ф1) -tg(ф2)) находятся по данным cos(ф1) и cos(ф2) Значение cos(ф1) коэффициента мощности до установки УКРМ

Значение cos(ф2) коэффициента мощности после установки УКРМ, задается электроснабжающим предприятием.

Формула мощности приобретает такой вид:

Qc = P x k,

k- табличный коэффициент, соответствующий значениям коэффициента мощности cos(ф2)

Мощность УКРМ определяется конкретно для всех участков электрической сети в зависимости от характера нагрузки и способа компенсации.

Только после проведенного в полной мере анализа показателей, полученных при диагностике данных, появляется возможность выбора регулируемых или нерегулируемых УКРМ.

Обозначается степень дробления мощности по ступеням, время и скорость повторного срабатывания ступеней, выявляется необходимость использования в конденсаторной установке компенсации реактивной мощности для снижения коэффициента несинусоидальности в питающей сети, фильтрации нечетных гармоник, а также отсутствие эффекта резонанса. Это обеспечивает качество электроэнергии.

Таблица№2 Расчет мощности конденсаторов для УКРМ

Необходимо знать, что нельзя производить полную компенсацию реактивной мощности до единицы, это приводит к перекомпенсации, которая может произойти в результате непостоянного значения активной мощности потребителя, а также в результате случайных факторов. Желательное значение cosф2 от 0,90 до 0,95.

enargys.ru

Для чего необходима компенсация реактивной мощности?

Основной нагрузкой в промышленных электросетях являются асинхронные электродвигатели и распределительные трансформаторы. Эта индуктивная нагрузка в процессе работы является источником реактивной электроэнергии (реактивной мощности), которая совершает колебательные движения между нагрузкой и источником (генератором), не связана с выполнением полезной работы, а расходуется на создание электромагнитных полей и создает дополнительную нагрузку на силовые линии питания. Поэтому очень важен компенсатор реактивной мощности.

Реактивная мощность характеризуется задержкой (в индуктивных элементах ток по фазе отстает от напряжения) между синусоидами фаз напряжения и тока сети. Показателем потребления реактивной мощности является коэффициент мощности (КМ), численно равный косинусу угла (ф) между током и напряжением. КМ потребителя определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, т.е.: cos(ф) = P/S. Этим коэффициентом принято характеризовать уровень реактивной мощности двигателей, генераторов и сети предприятия в целом. Чем ближе значение cos(ф) к единице, тем меньше доля взятой из сети реактивной мощности.

Пример: при cos(ф) = 1 для передачи 500 KW в сети переменного тока 400 V необходим ток значением 722 А. Для передачи той же активной мощности при коэффициенте cos(ф) = 0,6 значение тока повышается до 1203 А.

Соответственно все оборудование питания сети, передачи и распределения энергии должны быть рассчитаны на большие нагрузки. Кроме того, в результате больших нагрузок срок эксплуатации этого оборудования может соответственно снизиться. Дальнейшим фактором повышения затрат является возникающая из-за повышенного значения общего тока теплоотдача в кабелях и других распределительных устройствах, в трансформаторах и генераторах. Возьмем, к примеру, в нашем выше приведенном случае при cos(ф) = 1 мощность потерь равную 10 KW. При cos(ф) = 0,6 она повышается на 180% и составляет уже 28 KW. Таким образом, наличие реактивной мощности является паразитным фактором, неблагоприятным для сети в целом.

В результате этого:

  • возникают дополнительные потери в проводниках вследствие увеличения тока;
  • снижается пропускная способность распределительной сети;
  • отклоняется напряжение сети от номинала (падение напряжения из-за увеличения реактивной составляющей тока питающей сети).

Все сказанное выше является основной причиной того, что предприятия электроснабжения требуют от потребителей снижения доли реактивной мощности в сети. Решением данной проблемы является компенсация реактивной мощности – важное и необходимое условие экономичного и надежного функционирования системы электроснабжения предприятия. Эту функцию выполняют устройства компенсации реактивной мощности КРМ-0,4 (УКМ-58) - конденсаторные установки, основными элементами которых являются конденсаторы.

Правильная компенсация позволяет:

  • снизить общие расходы на электроэнергию;
  • уменьшить нагрузку элементов распределительной сети (подводящих линий, трансформаторов и распределительных устройств), тем самым продлевая их срок службы;
  • снизить тепловые потери тока и расходы на электроэнергию;
  • снизить влияние высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • добиться большей надежности и экономичности распределительных сетей.

Кроме того, в существующих сетях

  • исключить генерацию реактивной энергии в сеть в часы минимальной нагрузки;
  • снизить расходы на ремонт и обновление парка электрооборудования;
  • увеличить пропускную способность системы электроснабжения потребителя, что позволит подключить дополнительные нагрузки без увеличения стоимости сетей;
  • обеспечить получение информации о параметрах и состоянии сети.

А во вновь создаваемых сетях - уменьшить мощность подстанций и сечения кабельных линий, что снизит их стоимость.

Зачем компенсировать реактивную мощность?

Реактивная мощность и энергия ухудшают показатели работы энергосистемы, то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках; увеличивается падение напряжения в сетях.

Реактивный ток дополнительно нагружает линии электропередачи, что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети.

Компенсация реактивной мощности, в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает величину порядка 30-40% в стоимости продукции. Это достаточно веский аргумент, чтобы руководителю со всей серьезностью подойти к анализу и аудиту энергопотребления и выработке методики компенсации реактивной мощности. Компенсация реактивной мощности – вот ключ к решению вопроса энергосбережения.

Основные потребители реактивной мощности:

  • асинхронные электродвигатели, которые потребляют 40% всей мощности совместно с бытовыми и собственными нуждами;
  • электрические печи 8%;
  • преобразователи 10%;
  • трансформаторы всех ступеней трансформации 35%;
  • линии электропередач 7%.

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а косинус фи уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40.

Мало нагруженные трансформаторы также имеют низкий коэффициент мощности (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии, а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок).

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • при использовании определенного типа установок снизить уровень высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.

продольная и поперечная компенсация реактивной мощности

www.pea.ru

Зачем нужна компенсация реактивной мощности

Компенсация реактивной мощности на предприятии позволяет существенно сократить расход электроэнергии, снизить нагрузку на кабельные сети и трансформаторы, продлив тем самым их ресурс.

 

Где необходимы конденсаторные установки?

Как известно Основные потребители электроэнергии на промышленных предприятиях являются такие индуктивные приемники, как асинхронные электродвигатели, трансформаторы, индукционные установки и т. д. Работа этих приемников связана с потреблением реактивной энергии для создания электромагнитных полей.

Реактивная энергия («паразитная» энергия) не производит полезной работы, а, циркулируя между приемником и источником тока, приводит к дополнительной загрузке линий электропередачи и генераторов и, следовательно, снижает коэффициент мощности сети.

Наличие реактивной мощности является неблагоприятным фактором для сети в целомВ результате этого:

  • Возникают дополнительные потери в проводниках вследствие увеличения тока
  • Снижается пропускная способность распределительной сети
  • Отклоняется напряжение сети от номинала (падение напряжения из-за увеличения реактивной составляющей тока питающей сети).

Показателем потребления реактивной мощности является коэффициент мощности (КМ), численно равный косинус угла (ɸ) между током и напряжением. КМ потребителя определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, т.е.: COS(ɸ)=Р/S. Этим коэффициентом принято характеризовать уровень реактивной мощности двигателей, генераторов и сети предприятия в целом. Чем ближе значение COS(ɸ) к единице, тем меньше доля взятой из сети реактивной мощности.

Таким образом, применение Конденсаторных установок остро необходимо на предприятиях, использующих:

  1. Асинхронные двигатели (cos(ɸ) ~0.7)
  2. Асинхронные двигатели, при неполной загрузке (cos(ɸ) ~0.5)
  3. Выпрямительные электролизные установки (cos(ɸ) ~0.6)
  4. Электродуговые печи(cos(ɸ) ~0.6)
  5. Индукционные печи(cos(ɸ) ~0,2-0.6)
  6. Водяные насосы(cos(ɸ) ~0.8)
  7. Компрессоры(cos(ɸ) ~0.7)
  8. Машины, станки(cos(ɸ) ~0.5)
  9. Сварочные трансформаторы(cos(ɸ) ~0.4)
  10. Лампы дневного света(cos(ɸ) ~0,5-0.6)

Для повышения коэффициента мощности применяют силовые конденсаторы и конденсаторные установки, являющиеся наиболее выгодными источниками получения реактивной мощности.

Плюсы от внедрения Установок компенсации реактивной мощности:

  1. Снижение потребления электроэнергии (от 10-20%, а при cos φ (0,5 и менее) потребность в электроэнергии может сократиться более чем на 30%)и как следствие уменьшение платежей (за счет «исключения» реактивной энергии из сети)
  2. Уменьшение нагрузки (до 30%) элементов распределительной сети (подводящих линий, трансформаторов и распределительных устройств), тем самым продлевается их срок службы
  3. Увеличение пропускной способности системы электроснабжения потребителя (от 30-40%), что позволит подключить дополнительные мощности без увеличения стоимости сетей.

Увеличение КМ решается подключением к сети конденсаторных батарей, производящих реактивную энергию в количестве, достаточном для компенсации реактивной мощности, возникающей в нагрузке.

Способы компенсации

Наиболее выгодный способ компенсации определяется конкретными условиями данного предприятия, и его выбор производится на основании технико-экономических расчетов и рекомендаций наших специалистов. Как правило, компенсация должна производиться в той же сети (на том же напряжении), к которой подключен потребитель, что обеспечивает минимальные потери.

Какие решения мы предлагаем

Наша Компания предлагает полный спектр услуг, А ИМЕННО:

  1. Проведение выездных замеров параметров качества электроэнергии.
  2. Подготовка проекта, подбор необходимого оборудования с экономическим обоснованием его внедрения (с конкретными сроками окупаемости установок и денежной экономии).
  3. Изготовления оборудования, как серийного исполнения, так и нестандартного (учитывающую специфику конкретного предприятия).
  4. Проведение шеф монтажных работ, а также гарантийное и после гарантийное обслуживание.Мы можем предложить как типовые решения, так и спроектировать, изготовить и внедрить на предприятии Заказчика уникальную систему компенсации реактивной мощности, учитывающую специфику конкретного предприятия.

В зависимости от потребности Заказчика установки могут изготавливаться как для внутренней, так и для уличной установки. Кроме этого возможен монтаж установок внутри утепленного блок-контейнера.

Для предприятий с резкопеременной нагрузкой (предприятия с большим количеством подъемно-транспортного оборудования, мощного сварочного оборудования и т.д.) мы предлагаем тиристорные конденсаторные установки, которые обеспечивают переключение ступеней конденсаторов с задержкой не более 20 мс.

Для выработки оптимального технического решения мы предлагаем выездные замеры параметров качества электроэнергии в сети предприятия. При необходимости наши инженеры выполнятшефмонтаж оборудования, а также любое гарантийное и послегарантийное обслуживание и ремонт.

nzku.ru


Смотрите также