Черная материя что это такое


Темная материя

Темная материя темная не потому, что черного цвета, а потому что представляет собой «темную лошадку» в прямом смысле: никто не знает, что это такое. Физикам темная материя нужна для того, чтобы объяснить расхождение в ускорении расширения вселенной и несоответствии видимой массы материи. Темная материя берет на себя более 95 % невидимой материи от всего ее количества во вселенной. Проблема в том, что темная материя слабо взаимодействует с реальным миром, только на уровне гравитации, поэтому поймать, зафиксировать или создать ее не представляется возможным на данный момент. И наши средства мониторинга и поиска чересчур слабы, чтобы уловить частицы темной материи, хотя работы в этой сфере определенно ведутся.

Темная энергия — одна из самых малоизученных видов энергий во Вселенной. Ее существование до сих пор ставится под вопрос наряду с существованием темной материи. Исследователи из Гавайского Университета предположили, что некоторые черные дыры могут быть сделаны именно из таинственной темной энергии, способной искажать пространство и время. Так ли это? Давайте попробуем разобраться вместе.

Читать далее

Темная материя — это самая загадочная субстанция во Вселенной. Она настолько загадочная, что никто до сих пор точно не знает, существует ли она на самом деле. Это уникальное вещество, из которого, возможно, состоит 80 % нашей Вселенной, никак не взаимодействует с окружающим миром: его невозможно ни увидеть, ни потрогать. Несмотря на этот печальный факт, в честь этого толком еще не открытого вещества учрежден даже собственный праздник — День темной материи, отмечаемый учеными 31 октября. Что ж, праздник в честь темной материи — это далеко не единственная странность столь таинственного вещества. 

Читать далее

Несмотря на многочисленные предположения о том, что наша Вселенная — компьютерная симуляция, на самом деле вероятность этого крайне мала. Однако, на свете нет ничего невозможного, поэтому ученые вполне могут наблюдать за самыми разными формами жизни в миллионах Вселенных. В теории. На самом же деле астрономы создали восемь миллионов Вселенных на компьютере. Дело в том, что симуляция зарождения и дальнейшего развития вселенных может многое рассказать о нашей.

Читать далее

За последнее время количество информации о свойствах и строении элементарных частиц, из которых состоит вся наша Вселенная, значительно возросло. Это позволило ученым узнать больше об устройстве нашего мира. Однако одна вещь до сих пор не дает им покоя: темная материя. Ее наличие подтверждается теоретическими расчетами и даже имеются некоторые данные о том, что она действительно должна существовать. Но «увидеть» элементарную частицу, из которой состоит темная материя пока так и не удалось. Однако физики ЦЕРН (Европейской организации по ядерным исследованиям) предполагают, что «основой» темной материи должен быть, так называемый, «темный фотон». И ученые приступили к его поискам.

Читать далее

Споры о том, что же такое темная материя, не утихают до сих пор. И хотя в ее существовании нет практически никаких сомнений, а согласно некоторым расчетам количество темной материи составляет более 80% Вселенной, обнаружить ее крайне непросто. Но почему, раз темной материи так много, найти ее столь трудно? Кажется, астрофизики из Стэндфордского университета узнали ответ на этот вопрос.

Читать далее

Теперь, когда ученые нашли бозон Хиггса, Большой адронный коллайдер будет искать еще более неуловимую цель: темную материю. Нас окружают темная материя и темная энергия — невидимые субстанции, которые связывают галактики, но никак себя не выдают. В новой работе излагается инновационный метод поиска темной материи силами Большого адронного коллайдера за счет эксплуатации относительно медленной скорости потенциальной частицы.

Читать далее

Одна из самых известных теорий Стивена Хокинга о темной материи сильно пошатнулась после публикации результатов японской команды астрофизиков под руководством Масахиро Такада из Физико-математического института Вселенной в Кавли, сообщает Live Science. Покинувший этот мир в прошлом году известный физик считал, что эта таинственная и невидимая субстанция состоит из первичных черных дыр, появившихся сразу после Большого взрыва. Японские ученые с помощью телескопа Subaru провели эксперимент, результаты которого хоть и не опровергают полностью теорию Хокинга, но допускают, что эти черные дыры должны быть действительно крошечными, чтобы объяснить природу темной материи.

Читать далее

Один из величайших научных поисков нашего времени — это охота на темную материю. Физики полагают, что это вещество наполняет вселенную и думают, что могут увидеть доказательства этого в том, как вращаются галактики. Дело в том, что галактики вращаются так быстро, что их должно было разорвать на части, но по всей видимости (или невидимости) существует некая скрытая масса, которая обладает достаточной гравитационной силой, чтобы удерживать их вместе.

Читать далее

Европейская лаборатория физических исследований ЦЕРН заявила, что планирует новый эксперимент по поиску частиц, связанных с темной материей, которая, как предполагают, составляет около 27% Вселенной. Эксперимент будет проводиться там же, где расположен Большой адронный коллайдер — гигантская лаборатория в 27-километровом туннеле на французско-швейцарской границе. Его задачей станет поиск «легких и слабо взаимодействующих частиц».

Читать далее

Подобно тому, как рябь в пруду указывает на то, что кто-то бросил камень, пробежал водомер или прыгнула лягушка, существование таинственного вещества — темной материи — определяется по его обширному влиянию на космос. Астрономы не могут наблюдать его напрямую, однако гравитация темной материи определяет рождение, форму и движение галактик. Это делает открытие прошлого года совершенно неожиданным: в странной, диффузной галактике вообще не нашли темной материи. Думаете, на этом все? Как бы не так.

Читать далее

hi-news.ru

Тёмная материя - это... Что такое Тёмная материя?

Состав Вселенной по данным WMAP

Тёмная материя в астрономии и космологии — форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним. Это свойство данной формы вещества делает невозможным её прямое наблюдение. Однако возможно обнаружить присутствие тёмной материи по создаваемым ею гравитационным эффектам.

Обнаружение природы тёмной материи поможет решить проблему скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

Данные наблюдений

Известно, что тёмное вещество взаимодействует со «светящимся» (барионным), по крайней мере, гравитационным образом и представляет собой среду со средней космологической плотностью, в несколько раз превышающей плотность барионов. Последние захватываются в гравитационные ямы концентраций тёмной материи. Поэтому, хотя частицы тёмной материи и не взаимодействуют со светом, свет испускается оттуда, где есть тёмное вещество. Это замечательное свойство гравитационной неустойчивости сделало возможным изучение количества, состояния и распределения тёмной материи по наблюдательным данным от радиодиапазона до рентгеновского излучения.[1]

Непосредственное изучение распределения тёмной материи в скоплениях галактик стало возможным после получения их высокодетализированных изображений в 1990-х годах. При этом изображения более удалённых галактик, проецирующихся на скопление, оказываются искажёнными или даже расщепляются из-за эффекта гравитационного линзирования. По характеру этих искажений становится возможным восстановить распределение и величину массы внутри скопления независимо от наблюдений галактик самого скопления. Таким образом, прямым методом подтверждается наличие скрытой массы и тёмной материи в галактических скоплениях.[2]

Опубликованное в 2012 году исследование движения более 400 звёзд, расположенных на расстояниях до 13 000 световых лет от Солнца, не нашло свидетельств присутствия тёмной материи в большом объёме пространства вокруг Солнца. Согласно предсказаниям теорий, среднее количество тёмной материи в окрестности Солнца должно было составить примерно 0,5 кг в объёме земного шара. Однако измерения дали значение 0,00±0,06 кг тёмной материи в этом объёме. Это означает, что попытки зарегистрировать тёмную материю на Земле, например, при редких взаимодействиях частиц темной материи с «обычной» материей, вряд ли могут быть успешными[3][4][5].

Кандидаты на роль темной материи

Наиболее естественным кажется предположение, что тёмная материя состоит из обычного, барионного вещества, по каким-либо причинам слабо взаимодействующего электромагнитным образом и потому необнаружимого при исследовании, к примеру, линий излучения и поглощения. В состав тёмного вещества могут входить многие уже обнаруженные космические объекты, как то: тёмные галактические гало, коричневые карлики и массивные планеты, компактные объекты на конечных стадиях эволюции: белые карлики, нейтронные звёзды, чёрные дыры. Кроме того, такие гипотетические объекты, как кварковые звёзды, Q-звёзды и преонные звёзды также могут являться частью барионной тёмной материи.

Проблемы такого подхода проявляются в космологии Большого взрыва: если вся тёмная материя представлена барионами, то соотношение концентраций лёгких элементов после первичного нуклеосинтеза, наблюдаемое в самых старых астрономических объектах, должно быть другим, резко отличающимся от наблюдаемого. Кроме того, эксперименты по поиску гравитационного линзирования света звёзд нашей Галактики показывают, что достаточной концентрации крупных гравитирующих объектов типа планет или чёрных дыр для объяснения массы гало нашей Галактики не наблюдается, а мелкие объекты достаточной концентрации должны слишком сильно поглощать свет звёзд.

Небарионная тёмная материя

Теоретические модели предоставляют большой выбор возможных кандидатов на роль небарионной невидимой материи. Перечислим некоторые из них.

Лёгкие нейтрино

В отличие от остальных кандидатов, нейтрино обладают явным преимуществом: известно, что они существуют. Поскольку число нейтрино во Вселенной сравнимо с числом фотонов, то, обладая даже малой массой, нейтрино вполне могут определять динамику Вселенной. Для достижения , где - так называемая критическая плотность , необходимы нейтринные массы порядка эВ, где обозначает число типов легких нейтрино. Эксперименты, проводимые на сегодняшний день, дают оценку масс нейтрино порядка эВ. Таким образом, лёгкие нейтрино практически исключаются в качестве кандидата на доминирующую фракцию тёмной материи.

Тяжёлые нейтрино

Из данных о ширине распада Z-бозона следует, что число поколений слабо взаимодействующих частиц (в том числе нейтрино) равно 3. Таким образом, тяжёлые нейтрино (по крайней мере, с массой менее 45 ГэВ) с необходимостью являются т. н. «стерильными», то есть не взаимодействующими слабым образом частицами. Теоретические модели предсказывают массу в очень широком диапазоне значений (в зависимости от природы этого нейтрино). Из феноменологии для следует диапазон масс приблизительно эВ, таким образом, стерильные нейтрино вполне могут составлять существенную часть тёмной материи.

Суперсимметричные частицы

В рамках суперсимметричных (SUSY) теорий существует по меньшей мере одна стабильная частица, которая является новым кандидатом на роль тёмной материи. Предполагается, что эта частица (LSP) не принимает участия в электромагнитном и сильном взаимодействиях. В качестве LSP-частицы могут выступать фотино, гравитино, хиггсино (суперпартнеры фотона, гравитона и бозона Хиггса соответственно), а также снейтрино, вино, и зино. В большинстве теорий LSP-частица представляет собой комбинацию перечисленных выше SUSY-частиц с массой порядка 10 ГэВ.

Космионы

Космионы были введены в физику для разрешения проблемы солнечных нейтрино, состоящей в существенном отличии потока нейтрино, детектируемых на Земле, от значения, предсказываемого стандартной моделью Солнца. Однако эта проблема нашла разрешение в рамках теории нейтринных осцилляций и эффекта Михеева — Смирнова — Вольфенштейна, так что космионы, по всей видимости, исключаются из претендентов на роль тёмной материи.

Топологические дефекты пространства-времени

Согласно современным космологическим представлениям энергия вакуума определяется неким локально однородным и изотропным скалярным полем. Это поле необходимо для описания так называемых фазовых переходов вакуума при расширении Вселенной, во время которых происходило последовательное нарушение симметрии, приводящее к разъединению фундаментальных взаимодействий. Фазовый переход — это скачок энергии вакуумного поля, стремящегося к своему основному состоянию (состоянию с минимальной энергией при данной температуре). Различные области пространства могли испытывать такой переход независимо, в результате чего образовывались области с определенной «выстроенностью» скалярного поля, которые, расширяясь, могли войти в соприкосновение друг с другом. В точках встречи областей с различной ориентацией могли образоваться стабильные топологические дефекты различной конфигурации: точечно-подобные частицы (в частности, магнитные монополи), линейные протяжённые объекты (космические струны), двумерные мембраны (доменные стенки), трехмерные дефекты (текстуры). Все эти объекты обладают, как правило, колоссальной массой и могли бы давать доминирующий вклад в тёмную материю. На текущий момент (2012 год) подобные объекты во Вселенной не обнаружены.

Классификация тёмной материи

В зависимости от скоростей частиц, из которых, предположительно, состоит тёмная материя, её можно разделить на несколько классов.

Горячая тёмная материя

Состоит из частиц, движущихся со скоростью, близкой к световой — вероятно, из нейтрино. Эти частицы имеют очень маленькую массу, но всё же не нулевую, и учитывая огромное количество нейтрино во Вселенной (300 частиц на 1 см³), это даёт огромную массу. В некоторых моделях на нейтрино приходится 10 % тёмной материи.

Эта материя из-за своей огромной скорости не может образовывать стабильные структуры, но может влиять на обычное вещество и другие виды тёмной материи.

Тёплая тёмная материя

Материю, движущуюся с релятивистскими скоростями, но ниже, чем у горячей тёмной материи, называют «тёплой». Скорости её частиц могут лежать в пределах от 0,1c до 0,95c. Некоторые данные, в частности, температурные колебания фонового микроволнового излучения, дают основания полагать, что такая форма материи может существовать.

Пока нет никаких кандидатов на роль составляющих тёплой тёмной материи, но возможно, стерильные нейтрино, которые должны двигаться медленнее обычных трёх ароматов нейтрино, могут стать одним из них.

Холодная тёмная материя

Тёмную материю, которая движется при классических скоростях, называют «холодной». Этот вид материи представляет наибольший интерес, так как, в отличие от тёплой и горячей тёмной материи, холодная может образовывать стабильные формирования, и даже целые тёмные галактики.

Пока частицы, подходящие на роль составных частей холодной тёмной материи, не обнаружены. В качестве кандидатов на роль холодной тёмной материи выступают слабо взаимодействующие массивные частицы — вимпы, такие как аксионы и суперсимметричные партнёры-фермионы лёгких бозонов — фотино, гравитино и другие.

Смешанная тёмная материя

До предложения теории тёмной энергии была разработана перспективная модель тёмной материи, состоящей из холодной и горячей материи в определённых пропорциях.

Обнаружение

Основная трудность при поиске частиц тёмной материи заключается в том, что все они электрически нейтральны. Имеются два варианта поиска: прямое и косвенное. При прямом поиске изучаются следствия взаимодействия этих частиц с электронами или атомными ядрами с помощью наземной аппаратуры. Косвенные методы основаны на попытках обнаружения потоков вторичных частиц, которые возникают, например, благодаря аннигиляции солнечной или галактической тёмной материи.

Эксперимент EDELWEISS направлен на прямое обнаружение частиц WIMP. В качестве мишени служат полупроводниковые детекторы, охлаждённые до температуры в несколько мК.

Альтернативные теории

Модифицированная ньютоновская динамика

В массовой культуре

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 12 мая 2011.
  • В серии игр Mass Effect тёмная материя и тёмная энергия в форме так называемого «Нулевого элемента» необходимы для движения со сверхсветовыми скоростями. Некоторые люди, биотики, используя тёмную энергию, могут контролировать поля эффекта массы.
  • В мультсериале «Футурама» тёмная материя используется в качестве топлива для космического корабля компании «Межпланетный экспресс». Появляется материя на свет в виде испражнений инопланетной расы «зубастильонцы» и по плотности крайне велика.

См. также

  • Тёмная энергия
  • Скрытая масса
  • Тёмная звезда

Примечания

  • Сайт Modern Cosmology, содержащий в том числе подборку материалов по тёмной материи.
  • Г.В.Клапдор-Клайнгротхаус, А.Штаудт Неускорительная физика элементарных частиц. М.: Наука, Физматлит, 1997.

dic.academic.ru

Тёмная материя

В 30-х годах ХХ в. швейцарец Ф. Цвикки наблюдал за одним из самых больших галактических скоплений в созвездии Волосы Вероники. Из наблюдений выяснилось, что видимая масса скопления гораздо меньше существующей. Эти данные подтвердились через сорок лет Верой Рубин. Стало понятно, что некая тёмная материя и тёмная энергия наполняют основной массой и галактическое пространство, и любое другое.

Наличие тёмной материи начали предполагать исходя из некоторых наблюдении:

  • Скорости вращения галактик не убывают от центра к краям. Убывание скорости должно происходить, если галактическая масса соответствует видимой.
  • Исследования спутников галактик и шаровых скоплений показывали, что вся масса галактики больше общей массы её звёзд и других составляющих
  • Двойные галактические системы и скопления обладали большей долей тёмной материи
  • В эллиптических галактиках звёздной массы не хватит, чтобы удерживать горячий газ

Из всех наблюдений выявились некоторые свойства таинственного вещества. Оно может взаимодействовать с обычным веществом. Тёмная материя в несколько раз плотнее барионного, и захватывает его частицы посредством гравитационных ям. Вследствие этого происходит свечение.

Вокруг нашего светила, на расстояниях до 13 тыс. св. лет, больших объёмов тёмной материи не выявлено, хотя, по расчётам, концентрация её должна быть порядка 0,5 кг на объём Земли.

Обсерватория «Планк» в 2013 году опубликовала данные о составе наблюдаемой Вселенной. Обычная (барионная) материя составляет 4,9%, тёмная – 26,8%, а тёмная энергия – 68,3%. Из этого очевидно, что тёмная материя и тёмная энергия — основа нашей Вселенной.

Что входит в тёмную материю (теории)

  • Барионная тёмная материя. Вполне логично допущение, что эта материя обычная, но плохо взаимодействующая электромагнитным образом. Поэтому обнаружить её не удаётся. Состав этого вещества может быть таким: звёзды-карлики, тёмные гало, нейтронные звёзды, чёрные дыры. Возможно присутствие звёзд кварковых и преонных, но они имеют статус объектов гипотетических. Такой вариант объяснения тёмной материи следует из космологии Большого взрыва. Исходя из этого, получается, что концентрация лёгких элементов должна быть резко отличной от наблюдаемой.
  • Небарионная тёмная материя. Предполагаемых объектов такого вещества достаточно. Но, конечно, всё это – теоретические модели.
  • Лёгкие нейтрино. Эти частицы реально существуют, и этот факт доказан. Считается, что их число во Вселенной аналогично числу фотонов. Хотя они и обладают очень малой массой, но общее число вполне может влиять на динамику пространства. Их масса в диапазоне 10-2 – 10-3 эВ. После производства некоторых экспериментов выяснилось, что лёгкие нейтрино не могут быть доминирующей частью тёмной материи.
  • Тяжёлые нейтрино. Эти нейтрино названы стерильными за неспособность слабого взаимодействия. Изученные свойства этих частиц таковы, что они вполне способны составить значительную часть тёмной материи. Параметры их масс — 10-1 – 10-4 эВ.
  • Аксионы. Такой тип частиц относится к гипотетическим нейтральным. Они введены в квантовую хромодинамику для решения некоторых проблем. Возможно, что они составляют существенную часть тёмной материи, несмотря на небольшую массу — 10-5эВ.
  • Суперсимметричные частицы. Теоретически существует одна такая частица — LSP. Она стабильная, и не участвует в электромагнитных и сильных взаимодействиях . Ею может быть гравитино, фотино, хиггсино и некоторые другие.
  • Космионы. Такие частицы ввели в физику, чтобы разрешить проблемы солнечных нейтрино. Но, после разрешения некоторых теорий, эти частицы, вероятно, исключат из числа претендентов, составляющих тёмную материю.
  • Дефекты пространства-времени. В вакуумном поле Вселенной могли происходить энергетические скачки. Результатом этого могла стать различная выстроенность скалярного поля. При взаимодействии областей, имеющих различную ориентацию, образовывались дефекты разных конфигураций. Объекты, полученные при этом, наделены большой массой. Они вполне могли бы стать доминирующей составляющей тёмной материи. Но пока такие частицы не обнаружены.

Классификация

Начальные стадии развития Вселенной характерны термодинамическим равновесием между частицами тёмной материи и космической плазмы. В какой-то момент началось снижение температуры, из-за чего изменились параметры пролёта частиц в плазме. Все взаимодействия с барионными частицами прекратились. Исходя из значений температуры, при которых это случилось, тёмная материя разделяется на три типа:

  1. Горячая. Такой параметр тёмной материи получился из-за многократного превышения энергии частиц над их массой, случившегося в точке выхода из равновесия.
  2. Холодная. Это частицы, вылетевшие из плазмы в нерелятивистском состоянии, то есть, не имеющие околосветовых скоростей. На роль таких частиц претендует класс вимпов – это массивные, но слабо взаимодействующие частицы. Они тоже пока существуют только в умах учёных. Они имеют приличную массу – больше десятков ГэВ – и остаточную концентрацию, которая способна сбалансировать энергии современной Вселенной. Сила их взаимодействия с барионным веществом позволяет надеяться на обнаружение их в прямом виде. Из теоретических разработок следует, что тёмная материя в любой галактике должна особенно концентрироваться в её центре. Но астрономические наблюдения  опровергают это, показывая, что она собирается в гало вокруг галактик и наполняет межгалактические пустоты.
  3. Тёплая. Такой тип материи составляют частицы, имеющие массу, не меньше 1 эВ. На выходе из равновесного состояния такие частицы были релятивистские. Они могли образоваться во время  перехода из одной стадии расширения Вселенной в другую. Возможными кандидатами на роль такого типа материи стали нейтрино и LSP-гравитино.

Изучение тёмной материи

Пока известно о трёх методах, позволяющих производить прямые астрономические наблюдения.

  1. Динамический. Изучаются радиальные скорости галактик в их скоплениях при помощи современных приборов.
  2. Газодинамический. Исследуется рентгеновское излучение горячих газов скоплений.
  3. Расчёт слабого гравитационного линзирования. Для этого метода необходимы точные изображения очень удалённых крупнейших скоплений галактик.

Фактическое обнаружение частиц

Все частицы тёмной материи не имеют электрического заряда. Это является главной трудностью в их поиске, существующем в двух вариантах.

  1. Прямой. Используя наземную аппаратуру, проводятся изучения следствий, вытекающих из взаимодействия тёмных частиц с электронами и ядрами атомов.
  2. Косвенный. Отыскиваются возможные потоки вторичных частиц, возникших в результате различных действий, например аннигиляции материи.

Всё усложняющиеся наблюдения учёных за нашим миром, позволяют сделать вывод, что большая часть его нам неведома. 95% всего наполнения Вселенной – интересная загадка, которую ещё предстоит решить.

light-science.ru

Темная, темная материя …

Распределение масс во Вселенной

Термины темная энергия и темная материя не вполне удачны и представляют собой дословный, но не смысловой перевод с английского. В физическом же смысле данные термины подразумевают, только то, что эти вещества не взаимодействуют с фотонами, и их с таким же успехом можно было бы назвать невидимой или прозрачной материей и энергией.

Тёмная материя в астрономии и космологии, а также в теоретической физике — гипотетическая форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним. Это свойство данной формы вещества делает невозможным её прямое наблюдение.

Вывод о существовании тёмной материи сделан на основании многочисленных, согласующихся друг с другом, но косвенных признаков поведения астрофизических объектов и по создаваемым ими гравитационным эффектам. Обнаружение природы тёмной материи поможет решить проблему скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

Давайте узнаем про все это подробнее …

Темная материя  и темная энергия — это то, что не видно глазу, однако их присутствие доказано в ходе наблюдений за Вселенной. Миллиарды лет назад наша Вселенная родилась после катастрофического Большого Взрыва. По мере того, как ранняя Вселенная медленно охлаждалась, в ней начала развиваться жизнь. В результате сформировались звезды, галактики и остальные видимые ее части. Размеры нашей Вселенной просто ошеломительны. К примеру, одного Солнца достаточно для освещения и обогрева миллиона планет, аналогичных Земле. При этом Солнце является звездой среднего размера, а одна только наша галактика состоит из 100 миллиардов звезд. Это количество превышает количество песчинок на небольшом пляже. Однако это еще не все.

Как известно, Вселенная состоит из нескольких миллиардов галактик, где существует самая разная материя.  Возможно ли, чтобы какая-то из этих материй была невидима глазу. Скорее всего, поскольку результаты недавно проведенных исследований показали, что мы можем видеть лишь десятую часть Вселенной. Значит, более 90% материи человек просто не способен рассмотреть даже с использованием специального оборудования. Астрономы называют такую материю темной.

Известно, что тёмное вещество взаимодействует со «светящимся» (барионным), по крайней мере, гравитационным образом и представляет собой среду со средней космологической плотностью, в несколько раз превышающей плотность барионов. Последние захватываются в гравитационные ямы концентраций тёмной материи. Поэтому, хотя частицы тёмной материи и не взаимодействуют со светом, свет испускается оттуда, где есть тёмное вещество. Это замечательное свойство гравитационной неустойчивости сделало возможным изучение количества, состояния и распределения тёмной материи по наблюдательным данным от радиодиапазона до рентгеновского излучения.

Опубликованное в 2012 году исследование движения более 400 звёзд, расположенных на расстояниях до 13 000 световых лет от Солнца, не нашло свидетельств присутствия тёмной материи в большом объёме пространства вокруг Солнца. Согласно предсказаниям теорий, среднее количество тёмной материи в окрестности Солнца должно было составить примерно 0,5 кг в объёме Земного шара. Однако измерения дали значение 0,00±0,06 кг тёмной материи в этом объёме. Это означает, что попытки зарегистрировать тёмную материю на Земле, например, при редких взаимодействиях частиц тёмной материи с «обычной» материей, вряд ли могут быть успешными.

Согласно опубликованным в марте 2013 года данным наблюдений космической обсерватории «Планк», интерпретированным с учётом стандартной космологической модели Лямбда-CDM, общая масса-энергия наблюдаемой Вселенной состоит на 4,9 % из обычной (барионной) материи, на 26,8 % из тёмной материи и на 68,3 % из тёмной энергии. Таким образом, Вселенная на 95,1 % состоит из тёмной материи и тёмной энергии.

Доказательством существования темной материи является ее тяжесть – сила гравитации, которая, словно клей, сохраняет целостность Вселенной. Все части Вселенной взаимно притягиваются друг к другу. Благодаря этому ученые смогли рассчитать общую массу видимой Вселенной, а также показатели гравитационных сил. В ходе расчетов был выявлен существенный дисбаланс в этих параметрах, что дало основание полагать, что существует некая невидимая материя, обладающая определенной массой и также подверженная воздействию гравитации.

Изучение темной материиКроме того, доказательством существования темной материи стало ее гравитационное влияние на другие объекты, в том числе на траекторию движения звезд и галактик. Было обнаружено, что многие галактики вращаются быстрее, чем ожидалось. Согласно теории гравитации А. Эйнштйна, они должны разлетаться в разные стороны. Однако что-то невидимое будто удерживает их вместе.

Также темная материя может повлиять на траекторию распространения света. Было исследован феномен гравитационного линзирования, который состоит в том, что плотные объекты способны отражать свет дальних объектов, меняя траекторию световых потоков. Это приводит к искажению изображения и возникновению миражей звезд и галактик. Ученые фиксируют эти световые изгибы, но не могут назвать природу этого явления.

Темная материя в нашей Вселенной может существовать в виде массивных астрономический гало-объектов (МАГО). К ним относятся планеты, луны, коричневые и белые карлики, пылевые облака, нейтронные звезды и черные дыры. Как правило, они слишком малы, чтобы их свет был обнаружен человеком, однако их существование может быть вычислено через гравитационное воздействие на световые потоки. В последние годы астрономы обнаружили несколько типов МАГО-объектов. Они могут состоять как из обычных барионных частиц, так и аксинов, нейтринов, вимпилов и суперсимметричной темной материи.

Исследование темной материи и темной энергии Поскольку интерес к темной материи продолжает расти, появляются новые инструменты, помогающие в получении более обширных представлений об этом таинственном феномене. Так, космический телескоп Хаббл предоставил весьма ценную информацию о размере и массе видимой Вселенной. Эти данные стали первым и очень важным шагом на пути к изучению истинного количество темной материи во Вселенной.

Важно понимать, что устройство Вселенной не является случайным, и с помощью Хаббла можно детально представить ее структуру. Доподлинно известно, что галактики располагаются в кластерах, а эти кластеры — в суперкластерах. Сверхскопления космических тел находятся в губчатой структуре с обширными пустотами. Очевидно, формирование такой структуры обусловлено весьма конкретными причинами. Рентгеновские телескопы, которые имеются в обсерватории Чандра, помогают в изучении огромных облаков горячего газа в этих скоплениях. Ученые выяснили, что в этих областях должна присутствовать и темная материя, иначе газ будет утекать из кластера. Кроме того, в данный момент ведется разработка новых инструментов, которые, в конце концов, помогут разглядеть эту темную сторону Вселенной.

Подходы и методы исследования частиц темной материи

Из чего состоит Вселенная 

На данный момент ученые всего мира всячески пытаются обнаружить или получить искусственно в земных условиях частицы темной материи, посредством специально разработанного сверхтехнологичного оборудования и множества различных научно-исследовательских методов, но пока все труды не увенчиваются успехом.

Один из методов связан с проведением экспериментов на ускорителях высокой энергии, широко известных как коллайдеры. Ученые, считая, что частицы темной материи тяжелее протона в 100-1000 раз, предполагают, что они должны будут зарождаться при столкновении обычных частиц, разогнанных до высоких энергий посредством коллайдера. Суть другого метода заключается в регистрации частиц темной материи, находящихся повсюду вокруг нас. Основная сложность регистрации данных частиц состоит  в том, что они проявляют очень слабое взаимодействие с обычными частицами, которые по своей сути для них являются как бы прозрачными. И все же частицы темной материи очень редко, но сталкиваются с ядрами атомов, и имеется определенная надежда рано или поздно все же зарегистрировать данное явление.

Существуют и другие подходы и методы исследования частиц темной материи, а какой из них первым приведет к успеху, покажет лишь время, но в любом случае открытие этих новых частиц станет важнейшим научным достижением.

Субстанция, обладающая антигравитацией

Темная энергия представляет собой еще более необычную субстанцию, чем та же темная материя. Она не обладает способностью собираться в сгустки, в результате чего равномерно распределена абсолютно по всей Вселенной. Но самым необычным ее свойством на данный момент является антигравитация.

Благодаря современным астрономическим методам имеется возможность определить темп расширения Вселенной в настоящее время и смоделировать процесс его изменения ранее во времени. В результате этого получена информация о том, что в данный момент, так же как и в недалеком прошлом, наша Вселенная расширяется, при этом темп этого процесса постоянно увеличивается. Именно поэтому и появилась гипотеза об антигравитации темной энергии, так как обычное гравитационное притяжение оказывало бы замедляющее воздействие на процесс «разбегания галактик», сдерживая скорость расширения Вселенной. Данное явление не противоречит общей теории относительности, но при этом темной энергии необходимо обладать отрицательным давлением – свойством, которым не обладает ни одно из известных на данный момент веществ.

Кандидаты на роль «Темной энергии»

Масса галактик в скоплении Абель 2744 составляет менее 5 процентов от всей его массы. Этот газ настолько горячий, что светит только в рентгеновском диапазоне (красный цвет на этом изображении). Распределение невидимой темной материи (составляющей около 75 процентов от массы этого кластера) окрашено в синий цвет.

Одним из предполагаемых кандидатов на роль темной энергии является вакуум, плотность энергии которого остается неизменной в процессе расширения Вселенной и подтверждает тем самым отрицательное давление вакуума. Другим предполагаемым кандидатом является «квинтэссенция» — неизведанное ранее сверхслабое поле, якобы проходящее через всю Вселенную. Также имеются и другие возможные кандидаты, но не один из них на данный момент так и не поспособствовал получению точного ответа на вопрос: что же такое темная энергия? Но уже сейчас понятно, что темная энергия представляет собой что-то совершенно сверхъестественное, оставаясь главной загадкой фундаментальной физики XXI века.

[источники]

источники

http://elementy.ru/lib/25560/25561

http://ru.wikipedia.org/wiki/%D0%A2%D1%91%D0%BC%D0%BD%D0%B0%D1%8F_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F

http://www.astronet.ru/db/msg/1210535/node6.html

http://spacegid.com/zagadochnaya-i-nevidimaya-temnaya-energiya-i-materiya.html

В.А.Рубаков. Темная энергия во Вселенной.pdf

А вот еще немного о тайнах космоса:  мы выясняли  Что такое черная дыра ? или может быть Черных дыр не существует ?.  А вот еще посмотрите на процесс Поглощение газового облака сверхмассивной черной дырой или например вот на такой Танец планет на фоне Масштабов вселенной Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия - http://infoglaz.ru/?p=55738

masterok.livejournal.com

Сверхъестественное Вселенского масштаба: что такое тёмная материя, куда ведут черные дыры, и зачем нужна квантовая механика

Физика, как ни парадоксально звучит, — наука наиболее разношёрстная, неизученная и неполноценная. И это мнение не только научных журналистов, но и самих учёных, понимающих как много ещё им предстоит открыть. Взять ту же Теорию относительности Эйнштейна: она идеально работает для планет и галактик, но для микромира субатомных частиц она совершенно непригодна. В микроскопических масштабах правит квантовая физика.

Если даже теоретические модели физики не могут объединиться, то что уж говорить об экспериментальных наблюдениях. Здесь как в притче об истине и слоне: один слепой мудрец сказал, что истина — это огромное и необъятное, потрогав слона за брюхо, другой — что она длинная и гибкая, коснувшись хобота животного, а третий — что у истины кисточка на тонком стебельке — как у хвоста.

И всё же, существуют в мире науки неоспоримые результаты наблюдений и идеальные с математической точки зрения гипотезы, в которых действительно интересно разобраться. Ведь они могут открыть такие просторы для размышлений, что попытка осмыслить бесконечность Вселенной покажется детской загадкой о качелях.

Тёмная материя

В марте 2013 года учёные из Европейского космического агентства получили результаты наблюдений космической обсерватории «Планк», изучавшей микроволновое фоновое излучение — свет, оставшийся в космосе после того самого Большого взрыва. Вместе с точной картой этого реликтового излучения физикам удалось составить наиболее полную диаграмму состава Вселенной.

Выяснилось: на долю обычной материи, из которой состоим мы с вами, звёзды, планеты и все остальное, приходится всего 4,9% от общего состава. 26,8% приходится на долю тёмной материи; больше всего во Вселенной тёмной энергии — 68,3%. Осознав ничтожность наших галактик, кластеров и туманностей, учёные заволновались: что это такое, и почему мы до сих пор ничего об этом не знаем?

Тёмную материю можно охарактеризовать всего двумя словами: «вездесущая» и «неуловимая». Если вспоминать школьный курс физики, то можно припомнить, что видов взаимодействия (по крайней мере, нам известных) существует всего четыре — гравитационное, электромагнитное, сильное и слабое. Всё, что мы можем увидеть или засечь каким-либо прибором, обязательно будет участвовать в электромагнитном взаимодействии, однако тёмная материя, как назло, этим не занимается.

Теоретики решили, что если есть материя, значит, она из чего-то состоит. В смысле, из каких-то частиц, похожих на наши атомы, или по крайней мере, протоны и электроны. Как только ни пытались назвать эти частицы физики — тёмными атомами, аксионами, космионами, тяжёлыми нейтрино. Наконец, сравнительно недавно с названием для частиц тёмной материи определились. Их назвали вимпами.

Астрономический спутник «Планк».

Вимп — грубая калька с английской аббревиатуры WIMP, которая расшифровывается как Weakly Interacting Massive Particles, то есть, «слабо взаимодействующие массивные частицы». Из четырёх видов взаимодействий вимпы участвуют только в двух — слабом, как видно из названия, и гравитационном, как видно из наблюдений. Астрономы постоянно сталкиваются с гравитационной тягой, которую оказывают скопления тёмной материи на наши родные звёзды и галактики.

На этом познания физиков о тёмной материи заканчиваются, если, конечно, не учитывать массу громоздких расчётов. Совершенно неясно, какой массой обладают эти частицы: одни расчёты указывают на 6-8 гигаэлектронвольт, другие — на 33 гигаэлектронвольта, а третьи дают вообще несопоставимые с реальностью данные.

Также непонятно, как поймать злосчастные вимпы. Пока что физики-экспериментаторы пытаются зафиксировать случаи взаимодействия тёмной материи с обычной и используют для этого сверхчувствительные детекторы. Участники эксперимента LUX («Большой подземный ксеноновый детектор»), к примеру, недавно заявили об отрицательных результатах своих трёхмесячных поисков, и о том что искомых вимпов малой массы найдено не было.

Пока весь мир ждет, когда будут выделены средства на постройку более чувствительных и крупных детекторов, остается только фантазировать, что же такое тёмная материя и тёмная энергия, и что они скрывают под своей темнотой.

Чёрные дыры

Чёрные дыры — фактически мёртвые звёзды. Они не имеют ничего общего с тёмной материей и являются вполне обычными с определённой точки зрения объектами. После того, как массивное светило напрочь исчерпает свой запас топлива и взорвётся сверхновой, образуется собственно чёрная дыра.

Это тело представляет собой сверхплотную точку — так называемую сингулярность — аналогичную тому, что представляла собой Вселенная в момент Большого взрыва. Сингулярность окружена горизонтом событий — гипотетической границей, за которую не может выйти ни материя, ни свет, ни даже информация. К слову, знаменитый Стивен Хокинг немного несогласен с последним утверждением: его именем названо так называемое излучение Хокинга, представляющее собой частицы, которым всё же удалось выпрыгнуть за пределы горизонта событий.

После осознания того факта, что чёрные дыры удерживают своей гравитацией целые галактики и обладают массами, равными миллионам солнечных, но крайне малыми размерами, начинается самое интересное.

Вполне доказанным является тот факт, что в чёрных дырах нет времени. Совсем нет. Оно вообще не идёт. Как не шло до Большого Взрыва. При приближении к чёрной дыре время замедляется, а потом останавливается вовсе. Одни и те же часы в космосе, где гравитация Земли не действует, идут быстрее, пусть и на такие доли секунды, которые для нас совершенно незаметны. Но одно дело Земля, а совершенно другое — чёрная дыра с исполинской массой. Полная остановка времени удивительна сама по себе, но теоретикам и этого мало. Они придумали массу интересных гипотез, абсолютно идеальных с математической точки зрения и поражающих воображение.

Например, американский физик польского происхождения Никодем Поплавский (Nikodem Poplawski) из университета Нью-Хейвена рассказал, что чёрные дыры могут быть фабричными печами для создания мельчайших семян материи. Теоретик уверен, что каждая чёрная дыра содержит в себе свою Вселенную, похожую на нашу. Согласно гипотезе Поплавского, все мы тоже живём внутри чёрной дыры и если прыгнем в чёрную дыру в центре Млечного Пути, то окажемся в параллельной Вселенной. Правда, скорее всего, в виде мельчайших частиц.

Чуть ранее другой теоретик, Ниайес Афшорди (Niayesh Afshordi) из Института теоретической физики «Периметр» предложил не менее экстравагантную гипотезу. Он зацепился за невероятное сходство сигнулярностей чёрных дыр и бесконечно малой точки, которую представляла собой Вселенная до Большого Взрыва. Космологи считают, что собственно Взрыв — единственное событие, которому не было причины. Но Афшорди не согласен.

Он предположил, что в параллельном измерении существует другая Вселенная, но не трёхмерная, как наша, а четырёхмерная. Поэтому наша трёхмерность — всего лишь горизонт событий четырёхмерной чёрной дыры, и образовалась наша Вселенная в момент взрыва сверхновой, выброса вещества и рождения чёрной дыры в четырёх измерениях. Эта версия идеально подходит для объяснения странной равномерности температурного фона, которого вряд ли могла достичь Вселенная за 13,8 миллиардов лет своего существования.

Квантовая механика

Квантовая механика скрывает за собой самые интересные тайны Вселенной. Выше уже было сказано: законы квантовой механики идеально функционируют для описания взаимодействий субатомных частиц, однако для описания природы массивных тел, будь то стул и стол или звезда и галактика, квантмех непригоден.

Но что будет, если включить фантазию? В этом разделе физики есть, как минимум, два явления, достойных внимания и ближайшего рассмотрения. Первое из них называется суперпозиция. Некая частица обладает сразу несколькими состояниями до тех пор, пока её не измерят — всё зависит от нас, наблюдателей. Здесь же уместно вспомнить замученного интернет-пользователями кота Шрёдингера: теоретик придумал этот мысленный эксперимент именно для иллюстрации понятия суперпозиции — кот жив и мёртв одновременно, пока коробку не откроют и наблюдатель не сыграет свою роль.

По принципу суперпозиции строятся квантовые компьютеры. В них вместо привычных битов функционируют кубиты (qubit, quantum bit — квантовый бит), которые принимают значения «0» и «1» одновременно. За счёт этого увеличивается скорость вычислений и, соответственно, производительность компьютера.

Другое квантовомеханическое явление называется квантовой запутанностью. Представьте себе две частицы, разведённые по разным концам Вселенной. Если они «запутаны» друг с другом, то как только одна из них примет определённое состояние, другая мгновенно пример противоположное. Если бы они сообщались посредством какого-либо электрического сигнала, то он шёл бы миллиарды лет, а тут смена происходит одновременно.

Фантазии на тему квантовой запутанности приводят учёных к разным выводам. Например, крупная команда исследователей из Принстона, Стэнфорда и Вашингтонского университета рассмотрела это явление с точки зрения макромира, то есть Общей теории относительности. Как показали расчёты, с математической точки зрения связь запутанности между двумя частицами полностью идентична червоточине — гипотетическому туннелю между двумя чёрными дырами, сквозь который можно путешествовать по пространству и времени.

И если представить, что наша Вселенная — всего лишь голограмма, проекция от другой или других миров, это математически означает, что то, что мы видим как квантовую запутанность, есть червоточина, только в четырёхмерном мире.

Исследованием голографического принципа занимается и всю жизнь занимался аргентинец Хуан Малдасена (Juan Maldacena). Изучая квантовую механику, учёный пришёл к выводу, что с ОТО её может примирить лишь теория струн, пока что полностью математическая. В рамках этой теории действует принцип, согласно которому наша Вселенная — результат проекций нескольких других измерений, от каждой из последних взявший по одному измерению.

На одной идее о квантовой запутанности можно зайти очень далеко. В конце концов, мгновенная передача какой-либо информации есть прямо нарушение принципа непреодолимости скорости света. Если когда-нибудь кто-нибудь придумает, как заставить запутанные частицы передавать нужную нам информацию — а пока что к этому не подобрались даже теоретики — то у нас появится шанс, к примеру, связаться с обитателями далёких планет. Если на них, конечно, вообще кто-то живет.

А если придумают как по запутанности передавать материю, то мечты фантастов о телепортации станут реальностью.

* * *

Кстати, за чудесами физики не надо лезть ни в чёрную дыру, ни нырять внутрь атома, достаточно выйти завтра утром на пробежку. Знайте, чем быстрее вы бежите сквозь пространство, тем медленнее движетесь сквозь время. Так что душ будете принимать не только постройневшим, но и помолодевшим.

Текст: Ася Горина, редактор «Вести Наука».

disgustingmen.com

Ответы@Mail.Ru: что такое тёмная материя?

ТЕМНАЯ МАТЕРИЯПримерно 30% массы Вселенной состоит из темной материи, которая называется темной, поскольку практически не излучает фотоны ни в каком диапазоне электромагнитного спектра. О существовании такого вида вещества астрономы подозревали еще в середине прошлого века, когда начали изучать вращение нашей и других галактик. Позже существование темной материи было обнаружено в скоплениях галактик, о чем свидетельствовали скорости отдельных галактик и температура горячего газа в скоплениях. Наша Галактика представляет собой гигантскую звездную систему, состоящую из 150 млрд. звезд, а также межзвездного газа и пыли. Распределение звезд в ней можно сравнить с гигантским диском для метания, размер которого составляет примерно 100 тыс. световых лет, а толщина превышает 10 тыс. световых лет. Звезды нашей Галактики вращаются вокруг ее центра, так же, как планеты Солнечной системы вокруг Солнца. Анализируя их движение, можно определять распределение гравитационного поля, точнее, гравитационного потенциала. Согласно теории гравитации Ньютона, поле создается массами (звездами) , поэтому казалось, что распределение гравитационного потенциала должно следовать распределению звезд. Изучение движения звезд показало, что это не так. Следовательно, можно сделать два противоположных вывода. Первый - теория гравитации Ньютона, созданная на основе наблюдений движения тел в нашей Солнечной системе, не справедлива при переходе на системы больших размеров и масс, таких как галактики. Второй вывод: не вся масса сосредоточена в звездах, а существует другой тип массы, который также является материалом, из которого построена наша Галактика, но он не проявляется при наблюдениях. Эта масса получила название темной материи. Оба вывода многократно обсуждались учеными и имели своих сторонников и противников. Однако подавляющее большинство астрономов склоняется к выводу о существовании темной материи, считая законы Ньютона справедливыми и в галактических масштабах. Связано это в основном с большим наблюдательным материалом по содержанию невидимой материи в галактиках, собранным к современному моменту времени. Существуют как галактики, в которых невидимой материи почти нет, так и с большим содержанием темного вещества. Если закон Ньютона надо было бы модифицировать для галактических масштабов, все галактики показали бы наличие одинаковых отклонений от закона всемирного тяготения. Кроме того, невидимое вещество обнаружено в скоплениях галактик, где также можно изучать распределение гравитационного потенциала. Конечно, астрономы не могут проследить движение отдельных галактик в скоплениях, но они могут вычислить скорости этих галактик по эффекту Допплера и тем самым измерить распределение гравитационного потенциала. Такие измерения тоже показывают, что тяготеющей массы в скоплениях значительно больше видимой. В скоплениях галактик существует газ, который находится в равновесии, поэтому он является горячим газом. Его температура позволяет измерять гравитационный потенциал скопления. Эти данные согласуются с измерениями вириальных скоростей галактик и показывают наличие темной массы. Наблюдения внегалактических гравитационных линз, а также микролинзирования в гало нашей Галактики также доказывают существование невидимой материи. Наиболее точное измерение количества невидимой материи во Вселенной дают измерения анизотропии реликтового излучения. Они были проведены в течение последнего года на спутнике WMAP, который составил радиокарту всего неба на нескольких длинах волн от 1,4 см до 3 мм. Измерение анизотропии реликтового излучения позволило понять физику ранней Вселенной и измерить ее глобальные параметры. Одной из таких характеристик является плотность невидимой материи. Если плотность всего вещества нашей Вселенной принять за 1, то плотность невидимой холодной темной материи составит примерно 30%. Далее ниже:

touch.otvet.mail.ru


Смотрите также