Аэродинамика что это такое


АЭРОДИНАМИКА - это... Что такое АЭРОДИНАМИКА?

  • аэродинамика — аэродинамика …   Орфографический словарь-справочник

  • АЭРОДИНАМИКА — (от греч. aer воздух, и dynamis сила). Наука о законах движения газов. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АЭРОДИНАМИКА греч., от aer, воздух, и dynamis, сила. Наука о законах движения газообразных тел …   Словарь иностранных слов русского языка

  • Аэродинамика — (от греческого аer воздух и dynamis сила) 1) раздел механики сплошных сред, в котором изучаются закономерности движения жидкостей и газов (преимущественно воздуха), а также механическое и тепловое взаимодействие между жидкостью или газом и… …   Энциклопедия техники

  • АЭРОДИНАМИКА — (от греч. aer воздух и dynamis сила), раздел гидроаэромеханики, в к ром изучаются законы движения воздуха (или др. газа) и силы, возникающие на поверхности тел, относительно к рых происходит его движение. В А. рассматривают движение с дозвук.… …   Физическая энциклопедия

  • аэродинамика — и, ж. aérodynamique f. Научная дисциплина, изучающая законы движения воздуха и других газов и их взаимодействие с движущимися в них телами. БАС 2. разделяется на Аэростатику, Пневматику и Аэродинамику. Ян. 1 296. Лекс. Ян. 1803 …   Исторический словарь галлицизмов русского языка

  • аэродинамика — Раздел механики сплошных сред, в котором изучаются закономерности движения газа, преимущественно воздуха, а также механическое и тепловое взаимодействие между газом и движущимися в нем телами. [ГОСТ 23281 78] Тематики аэродинамика летательных… …   Справочник технического переводчика

  • АЭРОДИНАМИКА — (от аэро... и греческого dynamis сила), наука о законах движения газов и взаимодействии их с твердыми телами. Сложилась в 1 й четверти 20 в. в связи с потребностями развивающейся авиации в аналитическом определении подъемной силы летательного… …   Современная энциклопедия

  • АЭРОДИНАМИКА — раздел аэромеханики, в котором изучаются законы движения газа (напр., воздуха) и силы, возникающие на поверхности обтекаемого газом тела. Сформировалась в 20 в. в связи с развитием авиации. Основные задачи аэродинамики: определение сил,… …   Большой Энциклопедический словарь

  • АЭРОДИНАМИКА — АЭРОДИНАМИКА, наука о движении газов и о силах, действующих на предметы, например, самолеты, движущиеся в воздушной среде. Авиаконструктор должен учитывать четыре важнейших фактора и их взаимосвязь: вес аппарата и груза, который должен быть… …   Научно-технический энциклопедический словарь

  • АЭРОДИНАМИКА — АЭРОДИНАМИКА, аэродинамики, мн. нет, жен. (от греч. aer воздух и dynamis сила) (научн.). Учение о сопротивлении воздуха при движении тел. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • АЭРОДИНАМИКА — АЭРОДИНАМИКА, и, жен. Раздел аэромеханики, изучающий движение воздуха и других газов и взаимодействие газов с обтекаемыми ими телами. | прил. аэродинамический, ая, ое. А. нагрев (повышение температуры тела, движущегося с большой скоростью в… …   Толковый словарь Ожегова

dic.academic.ru

АЭРОДИНАМИКА

Содержание статьи

АЭРОДИНАМИКА, раздел механики сплошных сред, в котором изучаются закономерности движения воздуха и других газов, а также характеристики тел, движущихся в воздухе. К аэродинамическим характеристикам тел относятся подъемная сила и сила сопротивления и их распределения по поверхности, а также тепловые потоки к поверхности тела, вызванные его движением в воздухе. В аэродинамике рассматриваются такие тела, как самолеты, ракеты, воздушно-космические летательные аппараты и автомобили. В атмосферной аэродинамике изучаются процессы диффузии твердых частиц (например, дыма, смога, пыли) в атмосфере и аэродинамические силы, действующие на здания и другие сооружения. Ниже рассматриваются проблемы, связанные с движением летательных аппаратов, однако те же принципы можно применить к описанию других явлений, изучаемых в общей гидроаэромеханике (cм. ГИДРОАЭРОМЕХАНИКА). Здесь изложены физические законы, управляющие движениями воздуха, и концепции, необходимые для понимания механизмов возникновения подъемной силы и силы сопротивления при различных скоростях полета, включая течения с ударными волнами. На очень больших высотах (свыше 60 км) вследствие очень низкой плотности воздуха возникают некоторые изменения картины обтекания тела.

ХАРАКТЕРИСТИКИ ВОЗДУХА И ДРУГИХ ТЕКУЧИХ СРЕД

В аэродинамике принимаются во внимание такие свойства воздуха, как плотность, давление, температура и молекулярный состав.

Воздух состоит из молекул ряда химических элементов, в основном азота (78%) и кислорода (21%). Имеются также небольшие примеси аргона, углекислого газа, водорода и других газов. Число молекул в единице объема воздуха чрезвычайно велико: на уровне моря при температуре 15° С в 1 м3 содержится 2,7Ч1025 молекул. Плотность определяется как масса воздуха, содержащегося в единице объема.

Давление представляет собой силу, действующую на единицу площади. Молекулы воздуха находятся в непрерывном движении; они соударяются с ограничивающей воздух поверхностью и отражаются от нее. Сумма всех импульсов, сообщаемых молекулами, падающими на единицу площади поверхности за единицу времени, равна давлению.

Температура воздуха (или какого-либо другого газа) служит мерой средней кинетической энергии молекул (равной половине произведения массы на квадрат скорости), отнесенной к единице массы.

Важной физической характеристикой газа, зависящей только от температуры, является скорость звука. Скорость звука a (м/с) в воздухе можно вычислить, зная абсолютную температуру T (K), по формуле .

Связь между давлением p, плотностью r и абсолютной температурой T дается формулой p = rRT, где R – газовая постоянная, равная 287,14 м2/с2ЧК для воздуха. Из этой формулы следует закон Бойля, согласно которому при постоянной температуре p/r = const, т.е. изменение плотности прямо пропорционально изменению давления.

Изменения давления и плотности воздуха по высоте согласуются с этими законами. Давление и плотность уменьшаются, по сравнению с их значениями на уровне моря, в 2 раза на высоте 6 км, в 5 раз на высоте 12 км и в 100 раз на высоте 30 км.

В нижних слоях атмосферы температура воздуха также снижается при увеличении высоты. Стандартная температура на уровне моря составляет 288 К. Она уменьшается до 256 К на высоте 5 км и до 217 К на высоте 12 км.

Важной характеристикой движущейся среды является ее вязкость. Вязкость проявляется через свойство прилипания текучей среды к поверхности, тогда как невязкая среда свободно скользит вдоль обтекаемой поверхности. Чтобы проиллюстрировать влияние вязкости, порождающей силу, замедляющую течение (силу сопротивления), рассмотрим две большие параллельные друг другу пластины A и B (рис. 1), одна из которых движется относительно другой. Вязкая среда прилипает к каждой из пластин. Случайные движения молекул создают эффект «перемешивания», стремящегося выровнять средние скорости течения, скорость которого на пластине B равна V, а на пластине A – нулю. Результирующее распределение скоростей также приведено на рис. 1, где длина стрелок пропорциональна величине скорости в данной точке течения по высоте между пластинами. Таким образом, на движущуюся пластину B действует сила, тормозящая ее движение. Чтобы обеспечить движение пластины B при наличии торможения, к ней должна быть приложена противодействующая сила. Такая же сила стремится привести в движение пластину A.

Величина силы, необходимой для поддержания движения пластины B со скоростью 1 м/с (или удержания на месте неподвижной пластины A), при условии, что расстояние между пластинами равно 1 м, а площадь каждой из них – 1 м2, называется коэффициентом вязкости m. Для воздуха при температуре 0° С и давлении 1 атм m = 1,73Ч10–5 HЧc/м2. Эксперименты показывают, что коэффициент вязкости воздуха изменяется в зависимости от температуры пропорционально T0,76.

ФУНДАМЕНТАЛЬНЫЕ ЗАКОНЫ

Аэродинамика описывается фундаментальными физическими законами механики сплошных сред. Эти законы называются «законами сохранения», так как они выражают свойство сохранения массы, энергии и импульса для каждого элементарного объема движущейся среды.

При использовании законов сохранения важную роль играет принцип относительности движения, сформулированный Галилео Галилеем (1564–1642), согласно которому сила, действующая на тело в воздушном потоке, зависит только от относительной скорости движений тела и воздуха и не зависит от того, движется ли тело в покоящемся воздухе или же воздух движется относительно неподвижного тела.

Применим законы сохранения не к отдельным молекулам, а к некоторому движущемуся элементарному объему среды, содержащему большое число молекул. Этот упрощенный подход представляется неизбежным, если вспомнить, что молекулы, помимо своего перемещения вместе с течением, совершают случайные движения, и законы, описывающие эти движения, должны учитывать столкновения между различными молекулами, в которых изменяются их направления движения, скорости и т.д. Рассмотрим, например, элементарный объем в форме кубика со стороной 0,01 мм, объем которого равен 10–6 мм3. В этом малом объеме все еще содержится 2,7Ч1010 молекул, и каждая из них движется случайно. Однако вследствие того, что объем содержит большое число молекул, он будет перемещаться со средней скоростью вдоль линий тока течения, изображенных на рис. 2.

Согласно другому условию, этот элементарный объем должен быть настолько мал, чтобы средние скорости в каждой его точке можно было считать приблизительно одинаковыми. Например, если рассматривается обтекание сферы диаметром 10 мм, то элементарный кубик со стороной 0,01 мм будет достаточно малым для того, чтобы он рассматривался как одно целое, перемещающееся вдоль линии тока.

Таким образом, мы рассматриваем элементарный объем среды, который достаточно велик для того, чтобы в нем содержалось большое число молекул, и достаточно мал по сравнению с «характерным масштабом» течения. На очень больших высотах, где плотность воздуха мала, понятие частицы среды теряет смысл, и приходится рассматривать движения отдельных молекул. Линии тока течения определяются как траектории частиц текущей среды. Линии тока могут быть визуализированы с помощью струек дыма, вдуваемого в воздушный поток.

В применении к рассматриваемым частицам текущей среды закон сохранения массы означает, что массовый поток воздуха, проходящего между линиями тока A и B на рис. 2, один и тот же, в каком бы месте он ни измерялся. Следовательно, поток воздуха через линию A1B1 такой же, как поток воздуха через линию A2B2. Этот закон называется еще уравнением неразрывности, и течение, удовлетворяющее этому условию, называется непрерывным течением.

Закон сохранения импульса является выражением второго закона Ньютона в применении к частицам текущей среды. Он может быть записан в следующей форме:

Сила = Изменение импульса за секунду.

Следствием этого закона является связь между давлением p, плотностью r и скоростью v. Если скорость течения достаточно мала (так что плотность можно считать постоянной всюду в поле течения), то выполняется следующее простое соотношение:

p + 1/2rv2 = const.

Эта формула, известная как закон Бернулли, была получена швейцарским математиком и инженером Даниилом Бернулли (1700–1782).

Течение, которое удовлетворяет этому уравнению, называется несжимаемым, поскольку оно применимо как к жидкостям, которые практически несжимаемы, так и к газам, если скорости их движения малы по сравнению со скоростью звука. Если скорость в какой-либо точке потока больше половины скорости звука, то расчеты по этой формуле будут содержать значительные погрешности. Такие течения называются сжимаемыми.

Третий закон сохранения, используемый для описания деталей поля течения, выражает условие сохранения энергии. Применительно к течениям можно рассматривать два рода кинетической энергии: энергию, связанную с основным (упорядоченным) течением, и энергию, соответствующую случайным движениям молекул. Энергию, связанную со структурой отдельных молекул и атомов, мы рассматривать не будем, так как ее влияние становится заметным лишь при очень высоких температурах.

В расчете на единицу объема кинетическая энергия упорядоченного движения записывается как 1/2rv2, тогда как кинетическая энергия случайных (неупорядоченных) движений равна rcpT, где cp – удельная теплоемкость при постоянном давлении и T – абсолютная температура воздуха. Согласно закону сохранения энергии для установившихся течений, сумма отнесенных к единице объема энергиий упорядоченного и случайного движений сохраняет постоянное значение:

срT + 1/2v2 = const.

Из этого уравнения энергии видно, что если скорость течения v увеличивается, то его температура T уменьшается.

Параметры течения и движущегося тела.

Силу, действующую на движущееся тело, можно выразить с помощью некоторого безразмерного параметра. Этот параметр получается, если силу отнести к некоторой комбинации существенных характеристик среды и течения, также имеющей размерность силы. По второму закону Ньютона сила F равна произведению массы на ускорение и имеет размерность ml/t 2, где m – масса, выраженная в кг, l – длина и t – время (с). Величиной, имеющей размерность силы, является произведение плотности r, квадрата скорости движения тела в среде v2 и площади S. Искомый безразмерный параметр, который называется коэффициентом силы, определяется следующим соотношением:

Множитель 1/2 вводится из соображений удобства, так как такой же множитель содержится в уравнении Бернулли, приведенном выше. Сила как векторная величина, характеризуется своими компонентами, имеющими различные направления. Соответственно этому различают три коэффициента сил: коэффициент подъемной силы (нормальной к скорости набегающего потока), коэффициент силы сопротивления (направленной вдоль скорости набегающего потока) и коэффициент боковой силы (ортогональной двум предыдущим).

Сам коэффициент силы зависит от других безразмерных параметров. Одним из них является число Рейнольдса Re, введенное английским инженером Осборном Рейнольдсом (1842–1912). Этот критерий определяется формулой

Здесь m – коэффициент вязкости, имеющий размерность m/lt.

Длина l, входящая в определение критерия Рейнольдса, является характерным масштабом течения. Для течения около сферы в качестве l можно взять диаметр сферы, для самолета это хорда крыла, а для трубы – ее диаметр. Это означает, что можно сравнивать числа Рейнольдса для течений различных сред (с различными значениями r и m) около двух сфер или двух геометрически подобных самолетов. Однако не имеет смысла сравнивать числа Рейнольдса течений около сферы и около самолета, так как эти тела не являются геометрически подобными и нельзя определить один масштаб длины, устанавливающий соответствие между этими двумя видами течений. Сопоставление чисел Рейнольдса для течений около двух сфер может служить указанием об относительном влиянии вязкости среды на характер течения.

Вторым определяющим критерием является число Маха M,

M = v/a,

введенное австрийским физиком Эрнстом Махом (1838–1916). Число Маха может служить мерой влияния сжимаемости на аэродинамические характеристики тел.

Излагаемые здесь сведения касаются главным образом влияния чисел Рейнольдса и Маха на аэродинамические характеристики, т.е. на подъемную силу и сопротивление крыльев и других элементов самолета. Ниже будет показано, что каждое из этих чисел определяет некоторые особенности обтекания, соответствующие высоким или низким значениям размера тела, скорости или высоты полета.

НЕСЖИМАЕМЫЕ ТЕЧЕНИЯ

Подъемная сила.

Когда крыло обтекает поток, движущийся с числом Маха, значительно меньшим единицы (т.е. скорость течения значительно меньше скорости звука), то распределения давлений по его верхней и нижней поверхностям имеют вид, показанный на рис. 3. Приведенные там же линии тока характеризуют траектории элементарных частиц текущей среды, скорости которых связаны с давлением уравнением Бернулли. Возникновение областей пониженного и повышенного давления означает, что скорость течения на верхней поверхности больше, чем на нижней. Так как давление на нижней поверхности соответственно больше, то на крыло действует сила, направленная вверх, или подъемная сила. При постоянном значении числа Рейнольдса подъемная сила Y пропорциональна плотности воздуха r, квадрату скорости полета v2, площади крыла S и углу атаки a между хордой крыла и направлением движения. Эта зависимость записывается в виде

Y = 1/2rv2Ska,

где k – коэффициент пропорциональности.

Разделив обе стороны этого соотношения на 1/2rv2S, получим выражение для безразмерного коэффициента подъемной силы

т.е. CY пропорционален углу атаки.

Коэффициент пропорциональности k принимает различные значения для крыльев различной формы в плане (рис. 4), и его величина зависит также от удлинения крыла l, определяемого соотношением l = b2/S, т.е. от отношения квадрата размаха крыла b2 к площади его поверхности S. Согласно теории, разработанной немецким ученым Людвигом Прандтлем (1875–1953),

При углах атаки, меньших чем 12°, истинное значение k приблизительно на 10% меньше значения, определяемого по этой формуле.

Влияние удлинения на величину коэффициента k и, следовательно, на подъемную силу крыла называется концевым эффектом. На рис. 5 приведен вид крыла сзади. Вследствие разности давлений происходит перетекание воздуха с нижней поверхности на верхнюю около конца крыла. Это круговое движение воздуха сохраняется позади крыла, и оно порождает концевые вихри, показанные на рис. 5,б.

Эти концевые вихри вызывают некоторое уменьшение эффективности крыла как несущей поверхности. Снижение эффективности, отражаемое уменьшением коэффициента k в соответствии с приведенным выше выражением, тем больше, чем меньше удлинение крыла.

На образование концевых вихрей расходуется некоторая часть мощности, необходимой для осуществления полета, и, следовательно, должна появляться сила сопротивления, обусловленная подъемной силой, которая называется индуктивным сопротивлением Xi. Согласно теории крыла Прандтля,

или

Наличие в знаменателе формулы для Xi величины b2 имеет важное значение при проектировании самолета: при заданных весе и скорости полета самолета индуктивное сопротивление в установившемся полете (когда вес уравновешивается подъемной силой) существенно уменьшается при увеличении размаха крыла.

Эти соотношения выполняются строго только для крыла эллиптической формы в плане (рис. 4), однако они пригодны для приближенной оценки аэродинамических характеристик прямоугольных крыльев с удлинениями свыше трех. Прежде чем обсуждать другие ограничения, касающиеся применимости этих формул, необходимо понять происхождение вязкого сопротивления и влияния вязкости на подъемную силу крыла.

Влияние вязкости.

Выше был определен коэффициент вязкости и отмечалось, что вязкая среда характеризуется свойством прилипания к твердой поверхности. Вследствие этого на поверхности тела, движущегося в вязкой среде, образуется пограничный слой, в котором скорость изменяется от скорости движения поверхности тела до скорости свободного течения на внешней границе пограничного слоя. Пограничный слой схематически изображен на рис. 6. В настоящее время исследования пограничного слоя базируются на результатах основополагающих работ Прандтля и Теодора фон Кармана (1881–1963).

Рис. 6 показывает, что течение в пограничном слое слоистое (ламинарное) вблизи точки его зарождения (около передней кромки тела), но постепенно завихряется (становится турбулентным) ниже по течению. Одной из важных проблем аэродинамики является определение положения точки перехода от ламинарного течения к турбулентному. Турбулентный пограничный слой намного толще ламинарного, и их толщины зависят от числа Рейнольдса Re, определяемого как произведение величины rv/m на расстояние от передней кромки x. Толщина пограничного слоя d дается следующими соотношениями:

Так, на расстоянии x = 1 м от передней кромки при v = 10 м/с, r = 1,23 кг/м3, m = 1,73Ч10–5 кг/мЧс толщина ламинарного пограничного слоя составляет 0,62Ч10–2 м, а толщина турбулентного пограничного слоя – 2,5Ч10–2 м. Таким образом, турбулентный пограничный слой в четыре раза толще ламинарного; тем не менее в обоих случаях эти толщины относительно малы.

Чтобы ускорить воздух в пограничном слое, к нему нужно приложить некоторую силу, и реакция на эту силу является силой сопротивления, которая называется сопротивлением трения. Коэффициенты сопротивления трения для ламинарного и турбулентного пограничных слоев даются формулами

Если при условиях, указанных выше, вычислить силу трения, действующую на единицу площади, то окажется, что турбулентное трение в 25 раз больше ламинарного. Следовательно, для уменьшения силы сопротивления трения, действующей на самолет, необходимо сохранять ламинарный режим течения в пограничном слое.

Кроме сопротивления трения, существует еще сопротивление формы, действующее на тело, помещенное в поток. Возникновение силы сопротивления этого типа разъясняется на рис. 7, который показывает, что среднее давление на фронтальной части поверхности летательного аппарата выше, чем в набегающем потоке, а на теневой части поверхности оно меньше давления в набегающем потоке. Суммируя все силы давления, получим сопротивление формы, которое для плохо обтекаемого тела, такого, как показанный на рис. 7 цилиндр, в сотни раз превышает сопротивление трения. Напротив, для хорошо обтекаемого тела, такого, как крыло при малых углах атаки, сопротивление формы меньше, чем сопротивление трения.

Когда угол атаки крыла превышает некоторое критическое значение (заключенное в диапазоне от 12 до 15°), поток отрывается от верхней поверхности; происходит срыв потока с крыла. Он сопровождается резким падением подъемной силы и ростом сопротивления крыла. На рис. 8,а,б показаны картины линий тока около крыла до и после срыва потока. При малых углах атаки с увеличением этого угла коэффициент подъемной силы возрастает, а затем, вследствие срыва потока, проходит через максимум и резко уменьшается.

Самолет совершает посадку при большом угле атаки, при котором коэффициент подъемной силы близок к максимальному значению. Чем больше этот максимум, тем меньше посадочная скорость, и по этой причине на самолете используются различные специальные устройства для увеличения максимальной подъемной силы (средства механизации крыла). Чтобы «затянуть» срыв на более высокие углы атаки и, следовательно, увеличить максимальную подъемную силу, используют предкрылки, закрылки и отсос воздуха из пограничного слоя через поверхность (рис. 9).

СЖИМАЕМЫЕ ТЕЧЕНИЯ

Если скорость движения тела (или воздуха относительно неподвижного тела) становится сравнимой со скоростью звука, то плотность воздуха в течении изменяется, и в коэффициентах аэродинамических сил проявляется влияние сжимаемости. Это влияние можно охарактеризовать с помощью числа Маха.

Рассмотрим сначала тонкое тело с заостренным носком, такое, как игла или лезвие бритвы, при нулевом угле атаки. Создаваемые носком такого тела возмущения давления малы, и эти возмущения распространяются во все стороны от носка со скоростью звука a, равной 340 м/с при стандартной температуре 288 К (15° С). Рассмотрим два режима полета и две волновые диаграммы, иллюстрирующие распространение возмущений (волн) давления. Диаграмма рис. 10,а соответствует дозвуковому полету (с M < 1), а рис. 10,б – сверхзвуковому полету (с M > 1). Тело, движущееся со скоростью v, проходит расстояние AB за время t, так что AB = vt. За это же время волна проходит расстояние at и уходит вперед относительно тела в случае дозвукового полета. При сверхзвуковом полете волна отстает от тела, и ее фронт, касательный к окружностям распространения возмущений, образует угол b с направлением движения тела. Так как угол ACB прямой, то

Можно видеть, что все возмущения давления образуют волновой фронт, наклоненный под углом b, который тем меньше, чем больше число Маха. Волны, генерируемые заостренными тонкими телами, называются волнами Маха, в отличие от ударных волн, рассматриваемых ниже, и угол b называется углом Маха.

Существуют волны давления двух типов: волны сжатия и волны разрежения. При переходе через волну сжатия происходит сжатие воздуха, и, следовательно, его плотность и давление увеличиваются. Обратная картина наблюдается в волне разрежения, при прохождении через которую имеет место разрежение воздуха, приводящее к уменьшению плотности и давления.

Математический анализ уравнений течения показывает, что если образуется некоторая совокупность следующих друг за другом волн сжатия, то происходит усиление головной волны, так как последующие волны догоняют ее и сливаются с ней. Образующаяся при этом интенсивная волна называется ударной, и ее свойства отличаются от свойств более слабых волн Маха. Так, последовательность волн разрежения не улавливается головной волной, и, следовательно, ударная волна всегда является волной сжатия. Напомним, что до сих пор рассматривалось тонкое заостренное тело; затупленное тело большой толщины при сверхзвуковой скорости движения порождает сильные возмущения, т.е. ударные волны, а не волны Маха.

Ударная волна движется со скоростью, превышающей скорость звука, и чем больше интенсивность волны (т.е. чем больше изменения плотности и давления в ней), тем быстрее она движется. (Например, ударная волна, возникающая при взрыве атомной бомбы, в начале своего пути перемещается со скоростью, составляющей несколько миллионов километров в час.) Угол между фронтом ударной волны и направлением течения больше угла Маха, так как скорость перемещения этой волны больше скорости звука a. Следующий пример дает количественное представление об образовании ударных волн и волн Маха. При M = 2 волна, генерируемая телом клиновидной формы (рис. 11), имеет характеристики, сходные с характеристиками волн Маха, если угол при вершине клина меньше 8°. Если этот угол больше 8°, то образуется ударная волна. На рис. 11 также приведено распределение давления на поверхности клина. При переходе через ударную волну в вершине клина давление скачкообразно увеличивается и остается постоянным до встречи с веером волн разрежения, порождаемым обтеканием угла B. Затем оно снова принимает постоянное значение, сохраняющееся до тех пор, пока не достигается ударная волна, исходящая из точки C. Линия тока abcdef состоит из прямолинейных участков, концы которых соответствуют пересечениям с волнами, генерируемыми изломами поверхности тела. Форма этой линии тока сильно отличается от формы соответствующей линии в дозвуковом течении (рис. 8), в котором линии тока начинают искривляться еще перед телом и остаются гладкими при изменении своей формы, вызванном присутствием тела.

Система волн, изображенная на рис. 11, кардинально изменяется, если угол при вершине клина превышает критическое значение, величина которого возрастает с числом Маха. При этом ударная волна, генерируемая носком тела, искривляется и отходит от тела вперед. Возникает отсоединенная ударная волна. Например, если при M = 2 угол клина больше 23°, то ударная волна будет отсоединенной. При угле клина, равном 23°, образуется присоединенная ударная волна, если M > 2, и отсоединенная, если M < 2. При M = 5 критический угол увеличивается до 41°. Аналогичные явления имеют место при обтекании тел с коническими носовыми частями, однако для конуса критический угол при фиксированном числе Маха больше, чем для клина. Например, при M = 2 критический угол конуса составляет 40°, тогда как для клина он равен 23°. На рис. 12 приведен фотоснимок, иллюстрирующий сверхзвуковое течение с отсоединенной ударной волной около затупленного тела и присоединенной – около тонкого конуса.

Непосредственно за передней частью отсоединенной ударной волны всегда возникает область дозвукового течения. Здесь сверхзвуковой поток встречается с прямым скачком уплотнения, при переходе через который он преобразуется в дозвуковое течение. Если скачок уплотнения наклонен относительно направления течения, то при прохождении через косой скачок течение остается сверхзвуковым, однако число Маха за скачком уменьшается. Прямые скачки уплотнения часто возникают в сверхзвуковых течениях в трубах или при истечении сверхзвуковой струи в атмосферу.

Течения в трубах.

Сверхзвуковое течение в трубе можно создать только в том случае, если в трубе имеется поджатие или горловина (рис. 13). Если отношение давлений p0/pв достаточно велико, то в горловине с площадью поперечного сечения Aкр достигается скорость звука, а в последующей части трубы скорость течения становится сверхзвуковой. Число Маха течения на выходе Мв определяется отношением площадей Ав/Акр. Приведенная ниже таблица иллюстрирует эту зависимость.

AВ/Aкр p0/pВ
2 1,69 2,0
3 4,17 4,6
4 11,1 10,4

Если относительное давление р0/рв меньше значения, приведенного в таблице, то в расширяющейся части трубы возникает прямой скачок уплотнения, за которым течение снова становится дозвуковым.

Влияние сжимаемости.

Теперь можно приступить к рассмотрению аэродинамических характеристик крыльев и других тел во всем используемом на практике диапазоне скоростей и высот полета, в котором необходимо учитывать влияние сжимаемости. Весь интервал скоростей полета самолета можно разбить на следующие диапазоны: дозвуковой, трансзвуковой, сверхзвуковой и гиперзвуковой. Это деление нельзя однозначно определить в терминах числа Маха безотносительно к форме тела и углу атаки. Тем не менее в каждом диапазоне течение обладает специфическими особенностями, которые отличают данный диапазон от остальных.

Аэродинамическое сопротивление, обусловленное влиянием сжимаемости, называется волновым. Ударные волны, образующиеся при движении тела, сообщают течению некоторую энергию. Эта энергия препятствует перемещению тела. Другими словами, когда образуется ударная волна, возникает волновое сопротивление, и требуется дополнительная сила для его преодоления. Следовательно, полная сила сопротивления, действующая на тело в сверхзвуковом течении, складывается из вязкого сопротивления (состоящего из сопротивления трения и сопротивления формы), индуктивного, рассмотренного выше, и волнового сопротивлений.

Диапазон несжимаемых течений, рассмотренных выше, соответствует М < 0,4. В этом диапазоне единственным существенным параметром, влияющим на коэффициенты подъемной силы и силы сопротивления, является число Рейнольдса.

В диапазоне дозвуковых скоростей, которому соответствуют числа Маха от 0,4 до 0,7, впервые начинает проявляться влияние сжимаемости. Это влияние сказывается главным образом на величине коэффициента пропорциональности k между коэффициентом подъемной силы CY и углом атаки крыла a. В случае крыла большого удлинения в потоке с 0,4 Ј M Ј 0,7 этот эффект описывается соотношением

где k1 – значение параметра k для несжимаемого течения. Например, при M = 0,6 коэффициент пропорциональности на 25% больше, чем в несжимаемом течении. В этом диапазоне чисел Маха волновое сопротивление отсутствует, так как течение всюду дозвуковое и скачки уплотнения не образуются.

Диапазон трансзвуковых скоростей, который иногда называется диапазоном «смешанного течения», начинается с числа Маха, при котором в некоторой точке на поверхности скорость течения становится звуковой, и распространяется до значения числа Маха, при котором течение становится сверхзвуковым повсюду. Ряд картин течения из трансзвукового диапазона приведен на рис. 14. Отличительной особенностью таких течений является наличие дозвуковых и сверхзвуковых областей потока, т.е. если скорость набегающего потока лишь немного меньше дозвуковой, то около тела появляются области течения со сверхзвуковыми скоростями, а если набегающий поток слегка сверхзвуковой, то существуют области течения с дозвуковыми скоростями. Такой «смешанный» характер течения создает существенные трудности для их теоретического исследования и систематизации данных об аэродинамических характеристиках тел в этом диапазоне скоростей. Ударные волны, показанные на рис. 14, создают относительно большое волновое сопротивление. Вследствие этого, а также из-за того, что при трансзвуковых скоростях часто возникают опасные колебания некоторых элементов самолета, летчики предпочитают летать либо при дозвуковой, либо при сверхзвуковой скорости. Трансзвуковой рост сопротивления крыла иллюстрирует кривая, приведенная на рис. 15. Экспериментальные исследования в трансзвуковом диапазоне осложняются тем, что в этом диапазоне скоростей относительно небольшие изменения чисел Рейнольдса и Маха оказывают значительное влияние на аэродинамические характеристики.

В сверхзвуковом диапазоне течение на всей поверхности тела, за исключением небольших участков вблизи передней кромки, является сверхзвуковым; рассчитать аэродинамические характеристики в этом диапазоне намного проще, чем в любом другом диапазоне скоростей. Приближенные формулы для вычисления коэффициентов подъемной силы и силы сопротивления тонкого крыла здесь имеют вид

В последней формуле величина t/c есть отношение толщины t к хорде крыла c. Эта формула показывает, что крыло сверхзвукового самолета должно быть тонким, а из соображений прочности следует, что оно должно иметь относительно небольшой размах. Это одна из важнейших причин, по которой на сверхзвуковых самолетах используют крылья малого удлинения.

Гиперзвуковое течение отличается от сверхзвукового в двух аспектах, каждый из которых проявляется постепенно по мере увеличения числа Маха. Во-первых, при числах Маха свыше 8 возмущения, генерируемые даже тонкими телами, становятся сильными ударными волнами. Поэтому изменения плотности и давления в них не подчиняются законам, справедливым для более слабых волн Маха, генерируемых при более низких сверхзвуковых скоростях. Следовательно, формулы для определения подъемной силы и силы сопротивления крыла в гиперзвуковом потоке должны отличаться от соответствующих формул для сверхзвуковых течений. Конкретный вид этих формул зависит от формы крыла в плане и формы поперечного сечения, однако в гиперзвуковом течении коэффициент CY пропорционален a2, а – комбинации (t/c)3 и a3. Один из методов нахождения распределения давления на телах, движущихся с гиперзвуковыми скоростями, описывается ниже в связи с проблемой полета на больших высотах. Второй, более существенной особенностью гиперзвукового течения является сильное аэродинамическое нагревание поверхности тела.

АЭРОДИНАМИЧЕСКОЕ НАГРЕВАНИЕ

Нагревание тела, движущегося с большой скоростью, описывается теоретическим уравнением энергии, приведенным в разделе «Фундаментальные законы». Формула, которая может рассматриваться как первое приближение к реальности, записывается в виде

где T0 – температура торможения, т.е. абсолютная температура частицы воздуха, когда она тормозится до состояния покоя (как, например, в носовой части тела), v – скорость и cр – удельная теплоемкость при постоянном давлении, равная 1000 м2/с2 К. Эту формулу можно также представить в виде

T0 – T = v2/2ср.

Следовательно, в точке торможения (точке A на рис. 8, а) температура воздуха на величину v2/2000 выше температуры воздуха в окружающей атмосфере. Например, для тела, движущегося с М = 10 на высоте, соответствующей уровню моря (a = 340,3 м/с), температура воздуха должна быть на 5800 К выше температуры окружающего воздуха. В действительности температура торможения меньше по ряду причин, из которых наиболее существенной является то, что часть энергии воздуха расходуется в процессах диссоциации, в которых молекулы разлагаются на составляющие их атомы, и ионизации, в которых электроны отрываются от атомных ядер. Эти процессы осложняют описание явления аэродинамического нагревания, однако не устраняют связанных с ним проблем.

Столь высокая температура, которая близка к температуре на поверхности Солнца, создает одну из наиболее серьезных проблем высокоскоростного полета. Полет с M = 10 в атмосфере невозможен, так как все известные материалы плавятся и испаряются при температурах, даже более низких, чем 6000 К. (Наиболее тугоплавкий из металлов – вольфрам – плавится при температуре 3700 К. Керамические материалы и керметы – смеси керамических материалов с металлами – плавятся при температуре 2500 К или еще ниже.) Практическое решение состоит в том, чтобы высокоскоростной полет осуществлялся на очень больших высотах, а затем происходило быстрое снижение летательного аппарата (стадия спуска) с быстрым уменьшением скорости в тех областях, где аэродинамическое нагревание будет наибольшим. Чтобы осуществить быстрое торможение, спускаемый аппарат должен обладать большим сопротивлением (сопротивление формы намного больше сопротивления трения). Высокий коэффициент сопротивления не является помехой для полета на очень больших высотах, так как там вследствие разреженности воздуха малы как сила сопротивления, так и тепловые потоки к поверхности тела. При быстром торможении на первоначальной стадии спуска в атмосфере скорость уменьшается до значений, при которых температура торможения уже не будет столь высокой.

Рекомендации для прохождения атмосферы, как и для входа в атмосферу, могут быть сформулированы в терминах летного коридора, показанного на рис. 16. Ограничение на высоту установившегося полета следует из условия, что сумма аэродинамической подъемной и центробежной сил должна превышать силу тяжести. Аэродинамическая подъемная сила пропорциональна плотности воздуха и квадрату скорости полета, а центробежная сила (эта сила удерживает, например, спутник на околоземной орбите) пропорциональна квадрату скорости полета. Следовательно, при низких скоростях полета плотность воздуха должна быть достаточно большой (соответственно – высота должна быть достаточно низкой), чтобы аэродинамическая подъемная сила компенсировала большую часть силы тяжести, тогда как при больших скоростях полета на больших высотах центробежная сила будет полностью компенсировать силу тяжести. На основе этих соображений определяется верхняя граница летного коридора (рис. 16). Область над этой границей обозначена символически как G > Y + ЦС, где G – сила тяжести (вес летательного аппарата), Y – подъемная сила и ЦС – центробежная сила. Положение нижней границы летного коридора, показанного на рис. 16, определено из условия, что допустимая температура обшивки летательного аппарата равна 1600 К. Положение верхней границы зависит от веса тела и площади несущей поверхности; положение нижней границы определяется предельной температурой, при которой материал обшивки сохраняет необходимые прочностные свойства. Ясно, что для поддержания непрерывного полета необходимо, чтобы изображающая летательный аппарат точка, определяемая значениями высоты и скорости полета, попадала внутрь летного коридора. Показанные на рисунке траектории спуска тем не менее пересекают нижнюю границу (время прохождения атмосферы настолько мало, что обшивка не успевает нагреться до температуры торможения).

Влияние вязкости.

Вследствие прилипания текущей среды всюду на поверхности летательного аппарата температура воздуха близка к температуре торможения. Наибольшие проблемы возникают вблизи точки торможения по двум причинам: во-первых, в эту область поступает воздух, который претерпевает сжатие в головной ударной волне, и, следовательно, тепловые потоки здесь больше, чем на других участках поверхности тела летательного аппарата; во-вторых, температура у поверхности на некотором удалении от точки торможения несколько меньше температуры торможения.

Сопротивление формы и сопротивление трения существенно зависят от скорости полета, однако принципы, сформулированные при рассмотрении течений несжимаемой жидкости, остаются неизменными. Коэффициенты трения для ламинарного и турбулентного режимов течения начинают заметно уменьшаться при M > 3, однако по-прежнему турбулентное сопротивление трения существенно выше ламинарного.

ПОЛЕТ НА БОЛЬШИХ ВЫСОТАХ

На очень больших высотах нельзя использовать понятие элементарного объема текущей среды, намного меньшего обтекаемого тела, но содержащего большое число молекул. Таким образом, обтекание тела на очень больших высотах нельзя описать с помощью линий тока, которые были определены выше как траектории элементарных частиц среды, движущихся около тела. Теперь течение должно рассматриваться как совокупность большого числа столкновений между молекулами, движущимися случайно около летящего тела. Этот режим течения, называемый свободномолекулярным, имеет место при M/Re < 3, что соответствует полету на высотах свыше 130 км. С другой стороны, на высотах меньше 30 км плотность воздуха все еще достаточна для того, чтобы его можно было рассматривать как сплошную среду; тогда можно ввести линии тока как траектории элементарных частиц текущей среды, обсуждавшиеся выше. Например, обтекание спутников может рассматриваться как свободномолекулярное течение. Тем не менее вследствие большой скорости полета их аэродинамическое сопротивление довольно велико, так что постепенно спутник снижается, а затем входит в плотные слои атмосферы и сгорает из-за аэродинамического нагревания.

Свободномолекулярное течение, иногда называемое ньютоновским, было предложено И.Ньютоном как универсальный режим обтекания тел на всех высотах и при любых скоростях полета. Например, подъемную силу, действующую на плоскую пластину, Ньютон вычислил как импульс, передаваемый в единицу времени всеми молекулами, которые налетают на поверхность пластины. Этот механизм существенно отличается от несжимаемого течения, в котором распределение давления на поверхности тела и, следовательно, подъемная сила определяются с помощью уравнения Бернулли, связывающего между собой скорость и давление. Бернуллиевский режим называется течением сплошной среды, так как в этом случае движущаяся среда рассматривается как однородная субстанция (континуум), а движения отдельных молекул не учитываются. Одним из следствий различия этих режимов является то, что коэффициент подъемной силы крыла пропорционален углу атаки для случая течения сплошной среды и квадрату угла атаки в свободномолекулярном течении, а именно

CY = 2 (a/57,3)2,

если угол атаки a выражен в градусах. Для крыла с относительным удлинением 6 при угле атаки a = 10° приведенная ранее формула для течения сплошной среды дает CY = 0,82, тогда как в свободномолекулярном течении CY = 0,061. Этот пример показывает, что коэффициент подъемной силы на низких высотах по формуле Ньютона составляет меньше 8% истинного значения подъемной силы крыла при заданной скорости полета. Однако на очень больших высотах, где справедлива формула Ньютона, сила сопротивления мала и могут быть реализованы большие скорости полета, так что величина подъемной силы, равная CY Ч1/2 rv2S, может достигать требуемого значения для уравновешивания силы тяжести. Ньютоновская модель течения соответствует также течению в относительно плотных слоях атмосферы, если число Маха настолько велико, что большая часть ударной волны остается присоединенной к поверхности тела.

ТРУДНОСТИ ТЕОРЕТИЧЕСКОГО АНАЛИЗА

Полет на высотах в диапазоне высот от 30 км (ниже превалируют течения сплошной среды) до 130 км, где реализуется свободномолекулярное течение, чрезвычайно трудно проанализировать теоретически. Экспериментальные исследования также осложняются тем, что вследствие низкой плотности потока требуется высокоточная измерительная аппаратура, с помощью которой можно было бы измерить малые подъемную силу и силу сопротивления, действующие на тело.

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ

Для экспериментального исследования законов аэродинамики используется один из двух подходов: либо летательный аппарат, оборудованный соответствующей измерительной аппаратурой, совершает полет, либо неподвижное тело, оборудованное измерительными датчиками, обтекается воздушным потоком. Как отмечалось выше, в отношении явлений обтекания оба случая эквивалентны.

Практически все экспериментальные исследования аэродинамических явлений, связанных с обтеканием самолета, проводятся на маломасштабных моделях. Возможность перенесения полученных результатов на натурные условия зависит от значений критериев подобия, таких, как число Рейнольдса rvl/m. Рассмотрим, например, модель самолета, выполненную в масштабе 1/4. Если при испытаниях величина rv/m в четыре раза больше, чем в условиях полета натурного самолета, то числа Рейнольдса для обеих ситуаций равны. Тогда, согласно теории, будут равными и коэффициенты сил, действующих на модель и на самолет. Для достижения равенства чисел Рейнольдса можно было бы попытаться увеличить плотность r. Однако на практике измеряют аэродинамические характеристики модели в некотором диапазоне чисел Рейнольдса, каждое из которых значительно меньше натурного значения, и с помощью теоретических соображений пересчитывают измеренные коэффициенты сил и определяют их натурные значения.

Выбор метода аэродинамического исследования зависит от его цели, однако наиболее простым, дешевым и надежным средством экспериментальных исследований является аэродинамическая труба. Модель выставляется в искусственно создаваемый воздушный поток таким образом, чтобы можно было измерить действующие на нее силы и моменты сил или исследовать особенности течения около модели.

Рис. 13 может рассматриваться как весьма приблизительная схема сверхзвуковой аэродинамической трубы. Воздух высокого давления истекает через трубу, и на тело, помещенное в сечении Aв, воздействует поток с числом Маха, зависящим от отношения площадей Aв/Aкр (см. табл.).

В экспериментальных исследованиях аэродинамического нагрева, например, при условиях, соответствующих входу в атмосферу возвращаемого космического аппарата, модель и аэродинамическая труба сгорят, если время измерений не ограничить. В таких исследованиях высокие температуры и давления часто создают ударной или детонационной волной; соответствующее устройство называется ударной трубой. Ударная волна возникает при разрыве диафрагмы, разделяющей области высокого и низкого давления. По мере продвижения ударной волны по трубе газ, прошедший через ударную волну, нагревается, сжимается и движется вслед за ней. При расширении потока создается течение с большим числом Маха и высокой температурой торможения. Время существования такого течения измеряется миллисекундами, так что суммарная тепловая нагрузка остается невысокой. Однако, используя чувствительную измерительную аппаратуру, можно определить температуру в точке торможения и величину тепловых потоков к модели. Специальные устройства позволяют также измерить распределение давления.

Летные испытания используются главным образом для окончательной проверки расчетных данных теории и результатов испытаний в аэродинамических трубах. В летных испытаниях самолеты и ракеты оборудуются измерительной аппаратурой и телеметрическими средствами, позволяющими передавать распределения температур и давлений на наземную станцию, где они записываются, расшифровываются и изучаются.

Еще одним способом, используемым в некоторых специальных исследованиях, является испытание моделей в свободном полете. Модель выстреливается в длинную трубу, в которой давление может изменяться в широком диапазоне, что позволяет варьировать число Рейнольдса. Скорость движения модели определяется посредством сопоставления фотоснимков, полученных в различные моменты времени, а распределения температур и давлений телеметрическими средствами передаются на регистрирующий блок. В таких испытаниях можно исследовать проблемы устойчивости полета, такие, как возникновение «болтанки» носка. Модель, которая опрокидывается в полете, является аэродинамически неустойчивой (центр давления у нее расположен впереди центра масс).

СМЕШАННЫЕ АЭРОДИНАМИЧЕСКИЕ ЯВЛЕНИЯ

Ниже дано краткое описание ряда интересных аэродинамических явлений, встречающихся в реальных условиях.

Влияние нестационарности течения.

Наиболее широко распространенным нестационарным явлением является, по-видимому, образование вихрей (аналогичных тем, которые создаются, например, лодочными веслами или ложечкой в чашке кофе). Вихри представляют собой области пониженного давления на поверхности жидкости. При обтекании цилиндра или пластины, установленной нормально к потоку, вихри сходят поочередно с двух боковых сторон тела с частотой, определяемой числом Струхаля v/nl = const, где n – число вихрей, образующихся за секунду, а l – характерная длина (диаметр цилиндра или ширина пластины). Соответствующий след называется вихревой дорожкой. Это явление создает некоторые проблемы на практике. Возникновение аэродинамической тряски (бафтинга) объясняется тем, что вихри, образующиеся за крылом, установленным под большим углом атаки, проходят над хвостовым оперением и вызывают колебательное изменение угла атаки, сопровождаемое пульсациями аэродинамических сил. При определенных условиях бафтинг может вызвать разрушение самолета. Еще одним нестационарным эффектом является возникновение сил, действующих на ракету, установленную на пусковой платформе. Вихревая дорожка, порождаемая поперечным ветром, вызывает раскачивание ракеты, и при неблагоприятных условиях обшивка может потерять устойчивость (покоробиться). Флаттер крыла самолета происходит вследствие взаимозависимости между упругими свойствами крыла и пульсациями подъемной силы, порождаемыми деформациями или отклонениями, вызванными аэродинамическими силами. Как правило, флаттер возникает в узком диапазоне скоростей полета и не проявляется вне этого диапазона. При полете самолета в воздухе «шквальные» нагрузки, вызванные турбулентностью атмосферы, могут стать причиной серьезных неудобств.

Влияние ударных волн.

Когда ударные волны, порождаемые сверхзвуковым самолетом, достигают земли, они создают сильный импульс давления, или шум, и чем больше скорость полета, тем больше интенсивность этого шума. Еще один эффект, известный как звуковой удар, возникает, когда самолет выходит из пикирования с большой скоростью. При этом воздух под крылом сжимается, и образуется ударная волна, которая движется по направлению к земле; в зоне ударной волны на поверхности земли слышны хлопки, и могут даже вылетать стекла из окон. Это явление можно сопоставить со звуком, создаваемым кожаным бичом, – звук порождается сжатием воздуха на кончике бича, которое затем перемещается с большой, но необязательно сверхзвуковой скоростью.

www.krugosvet.ru

Аэродинамика - это... Основы и особенности аэродинамики

Аэродинамика – это область знания, изучающая движения потоков воздуха и их воздействия на твердые тела. Является подразделом гидро- и газодинамики. Исследования в этой области восходят к глубокой древности, ко времени изобретения стрел и планирующих копий, позволявших дальше и точнее посылать снаряд в цель. Однако потенциал аэродинамики полностью был раскрыт с изобретением аппаратов тяжелее воздуха, способных летать либо планировать на значительные расстояния.

С древних времен

Открытие законов аэродинамики в 20 веке способствовало фантастическому скачку во многих областях науки и техники, особенно в транспортной сфере. На ее достижениях созданы современные летательные аппараты, позволившие сделать общедоступным фактически любой уголок планеты Земля.

Первые упоминания о попытке покорения неба встречаются в греческом мифе об Икаре и Дедале. Отец с сыном соорудили крылья, похожие на птичьи. Это указывает на то, что еще тысячелетия назад люди задумывались о возможности оторваться от земли.

Очередной всплеск интереса к сооружению летательных аппаратов возник в эпоху Возрождения. Страстный исследователь Леонардо да Винчи много времени посвятил этой проблеме. Известны его записи, в которых объяснены принципы работы простейшего вертолета.

Новая эпоха

Глобальный прорыв в науке (и аэронавтике в частности) совершил Исаак Ньютон. Ведь в основе аэродинамики лежит всеобъемлющая наука механика, родоначальником которой стал английский ученый. Ньютон первым рассмотрел воздушную среду как конгломерат частиц, которые, набегая на препятствие, либо прилипают к нему, либо упруго отражаются. В 1726 году он представил публике теорию сопротивления воздуха.

Впоследствии выяснилось, что среда действительно состоит из мельчайших частиц – молекул. Отражающую способность воздуха рассчитывать научились достаточно точно, а эффект «прилипания» считали несостоятельным предположением.

Удивительно, но данная теория нашла практическое применение спустя столетия. В 60-х, на заре космической эры, советские конструкторы столкнулись с проблемой расчета аэродинамического сопротивления спускаемых аппаратов «затупленной» сферической формы, при приземлении развивающих гиперзвуковые скорости. Из-за отсутствия мощных ЭВМ вычислить данный показатель было проблематично. Неожиданно выяснилось, что достаточно точно рассчитать величину сопротивления и даже распределение давления по лобовой части можно по простой формуле Ньютона, касающейся эффекта «прилипания» частиц к летящему объекту.

Основатель гидродинамики Даниэль Бернулли описал в 1738 году фундаментальную взаимосвязь между давлением, плотностью и скоростью для несжимаемого потока, известную сегодня как принцип Бернулли, который также применителен к расчетам силы аэродинамического подъема. В 1799 году сэр Джордж Кэли стал первым человеком, который идентифицировал четыре аэродинамических силы полета (вес, подъемную силу, сопротивление и тягу), а также отношения между ними.

В 1871 году Фрэнсис Герберт Уэнам создал первую аэродинамическую трубу, позволяющую точно измерять аэродинамические силы. Неоценимые научные теории разработаны Жаном Ле Рондом Даламбером, Густавом Кирхгофом, лордом Рэлеем. В 1889 году Чарльз Ренард, французский инженер по аэронавтике, стал первым человеком, который научно рассчитал мощность, необходимую для устойчивого полета.

От теории к практике

В 19 веке изобретатели взглянули на крыло с научной точки зрения. И благодаря исследованиям механизма полета птиц была изучена аэродинамика в действии, которую позже применили к искусственным летательным аппаратам.

Особо в исследованиях механики крыла преуспел Отто Лилиенталь. Немецким авиаконструктором создано и испытано 11 типов планеров, в том числе биплан. Им же совершен первый полет на аппарате тяжелее воздуха. За относительно недолгую жизнь (46 лет) он совершил порядка 2000 полетов, постоянно совершенствуя конструкцию, которая скорее напоминала дельтаплан, чем самолет. Он погиб во время очередного полета 10 августа 1896 года, став и первопроходцем аэронавтики, и первой жертвой авиакатастрофы. Кстати, один из планеров немецкий изобретатель лично передал пионеру в изучении аэродинамики самолетов Жуковскому Николаю Егоровичу.

Жуковский не просто экспериментировал с конструкциями самолетов. В отличие от многих энтузиастов того времени, прежде всего он рассматривал поведение воздушных потоков с научной точки зрения. В 1904 году он основал первый в мире аэродинамический институт в Качино под Москвой. С 1918 года возглавлял ЦАГИ (Центральный аэрогидродинамический институт).

Первые самолеты

Аэродинамика – это наука, позволившая человеку покорить небо. Без ее изучения было бы невозможно строить летательные аппараты, стабильно перемещающиеся в воздушных потоках. Первый самолет в привычном нам понимании изготовили и подняли в воздух 7 декабря 1903 года братья Райт. Однако этому событию предшествовала тщательная теоретическая работа. Американцы много времени посвятили отладке конструкции планера в аэродинамической трубе собственной разработки.

Во время первых полетов Фредерик В. Ланчестер, Мартин Вильгельм Кутта и Николай Жуковский выдвинули теории, которые объясняли циркуляцию воздушных потоков, создающих подъемную силу. Кутта и Жуковский продолжили разработку двумерной теории крыла. Людвигу Прандтлу приписывают развитие математической теории тонких аэродинамических и подъемных сил, а также работу с пограничными слоями.

Проблемы и решения

Важность аэродинамики самолетов возрастала по мере увеличения их скоростей. Конструкторы начали сталкиваться с проблемами, связанными со сжатием воздуха со скоростью, близкой или большей, чем скорость звука. Различия в потоках при таких условиях привели к проблемам управления воздушным судном, увеличению сопротивления из-за ударных волн и угрозе разрушения конструкции из-за аэроупругого флаттера. Отношение скорости потока к скорости звука было названо числом Маха по имени Эрнста Маха, который одним из первых исследовал свойства сверхзвукового потока.

Уильям Джон Маккуорн Ренкин и Пьер Анри Гугониот независимо друг от друга разработали теорию свойств течения воздуха до и после ударной волны, в то время как Якоб Акерет провел начальную работу по вычислению подъема и сопротивления сверхзвуковых аэродинамических поверхностей. Теодор фон Карман и Хью Латимер Драйден ввели термин «околозвуковой» для описания скоростей на границе 1 Маха (965-1236 км/час), когда сопротивление быстро растет. Впервые звуковой барьер был преодолен в 1947 году на самолете Bell X-1.

Основные характеристики

Согласно законам аэродинамики, для обеспечения полета в атмосфере земли любого аппарата важно знать:

  • Аэродинамическое сопротивление (ось X), оказываемое потоками воздуха на объект. Исходя из этого параметра подбирается мощность силовой установки.
  • Подъемную силу (ось Y), обеспечивающую набор высоты и позволяющую аппарату лететь горизонтально к поверхности земли.
  • Моменты аэродинамических сил по трем осям координат, действующих на летящий объект. Наиболее важным является момент боковой силы по оси Z (Mz), направленной поперек самолета (условно вдоль линии крыла). Он определяет степень продольной устойчивости (будет ли аппарат «нырять» или задирать нос вверх при полете).

Аэродинамические характеристики классифицируются по условиям и свойствам воздушного потока, включая скорость, сжимаемость и вязкость. Внешняя аэродинамика – это исследование потока вокруг твердых объектов различной формы. Примерами являются оценка подъема и вибраций самолета, а также ударных волн, которые образуются перед носом ракеты.

Внутренняя аэродинамика – это исследование воздушного потока, перемещающегося через отверстия (проходы) в твердых объектах. Например, она охватывает изучение потоков через реактивный двигатель.

Аэродинамические показатели также могут быть классифицированы в зависимости от скорости потока:

  • Дозвуковой называют скорость, меньшую скорости звука.
  • Околозвуковой (трансзвуковой) – если присутствуют скорости как ниже, так и выше скорости звука.
  • Сверхзвуковой – когда скорость потока больше скорости звука.
  • Гиперзвуковая – скорость потока намного больше скорости звука. Обычно под этим определением подразумевают скорости с числами Маха выше 5.

Аэродинамика вертолета

Если принцип полета самолета основан на подъемной силе при поступательном движении, оказываемой на крыло, то вертолет как бы сам создает подъемную силу за счет вращения лопастей в режиме осевого обдува (то есть без поступательной скорости). Благодаря данной особенности геликоптер способен зависать в воздухе на месте и совершать энергичные маневры вокруг оси.

Другие области применения

Естественно, аэродинамика применима не только к летательным аппаратам. Сопротивление воздуха испытывают все объекты, движущиеся в пространстве в газовой и жидкой среде. Известно, что водные обитатели – рыбы и млекопитающие – обладают обтекаемыми формами. На их примере можно проследить аэродинамику в действии. Ориентируясь на животный мир, люди также делают водный транспорт заостренной либо каплевидной формы. Это касается кораблей, катеров, подводных лодок.

Значительное сопротивление воздуха испытывают транспортные средства: оно возрастает по мере увеличения скорости. Для достижения лучшей аэродинамики автомобилям придают обтекаемую форму. Особенно это актуально для спорткаров.

fb.ru

АЭРОДИНАМИКА - это... Что такое АЭРОДИНАМИКА?

  • аэродинамика — аэродинамика …   Орфографический словарь-справочник

  • АЭРОДИНАМИКА — (от греч. aer воздух, и dynamis сила). Наука о законах движения газов. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АЭРОДИНАМИКА греч., от aer, воздух, и dynamis, сила. Наука о законах движения газообразных тел …   Словарь иностранных слов русского языка

  • Аэродинамика — (от греческого аer воздух и dynamis сила) 1) раздел механики сплошных сред, в котором изучаются закономерности движения жидкостей и газов (преимущественно воздуха), а также механическое и тепловое взаимодействие между жидкостью или газом и… …   Энциклопедия техники

  • аэродинамика — и, ж. aérodynamique f. Научная дисциплина, изучающая законы движения воздуха и других газов и их взаимодействие с движущимися в них телами. БАС 2. разделяется на Аэростатику, Пневматику и Аэродинамику. Ян. 1 296. Лекс. Ян. 1803 …   Исторический словарь галлицизмов русского языка

  • аэродинамика — Раздел механики сплошных сред, в котором изучаются закономерности движения газа, преимущественно воздуха, а также механическое и тепловое взаимодействие между газом и движущимися в нем телами. [ГОСТ 23281 78] Тематики аэродинамика летательных… …   Справочник технического переводчика

  • АЭРОДИНАМИКА — (от аэро... и греческого dynamis сила), наука о законах движения газов и взаимодействии их с твердыми телами. Сложилась в 1 й четверти 20 в. в связи с потребностями развивающейся авиации в аналитическом определении подъемной силы летательного… …   Современная энциклопедия

  • АЭРОДИНАМИКА — раздел аэромеханики, в котором изучаются законы движения газа (напр., воздуха) и силы, возникающие на поверхности обтекаемого газом тела. Сформировалась в 20 в. в связи с развитием авиации. Основные задачи аэродинамики: определение сил,… …   Большой Энциклопедический словарь

  • АЭРОДИНАМИКА — АЭРОДИНАМИКА, наука о движении газов и о силах, действующих на предметы, например, самолеты, движущиеся в воздушной среде. Авиаконструктор должен учитывать четыре важнейших фактора и их взаимосвязь: вес аппарата и груза, который должен быть… …   Научно-технический энциклопедический словарь

  • АЭРОДИНАМИКА — АЭРОДИНАМИКА, аэродинамики, мн. нет, жен. (от греч. aer воздух и dynamis сила) (научн.). Учение о сопротивлении воздуха при движении тел. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • АЭРОДИНАМИКА — АЭРОДИНАМИКА, и, жен. Раздел аэромеханики, изучающий движение воздуха и других газов и взаимодействие газов с обтекаемыми ими телами. | прил. аэродинамический, ая, ое. А. нагрев (повышение температуры тела, движущегося с большой скоростью в… …   Толковый словарь Ожегова

dic.academic.ru

АЭРОДИНАМИКА - это... Что такое АЭРОДИНАМИКА?

  • аэродинамика — аэродинамика …   Орфографический словарь-справочник

  • АЭРОДИНАМИКА — (от греч. aer воздух, и dynamis сила). Наука о законах движения газов. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АЭРОДИНАМИКА греч., от aer, воздух, и dynamis, сила. Наука о законах движения газообразных тел …   Словарь иностранных слов русского языка

  • Аэродинамика — (от греческого аer воздух и dynamis сила) 1) раздел механики сплошных сред, в котором изучаются закономерности движения жидкостей и газов (преимущественно воздуха), а также механическое и тепловое взаимодействие между жидкостью или газом и… …   Энциклопедия техники

  • АЭРОДИНАМИКА — (от греч. aer воздух и dynamis сила), раздел гидроаэромеханики, в к ром изучаются законы движения воздуха (или др. газа) и силы, возникающие на поверхности тел, относительно к рых происходит его движение. В А. рассматривают движение с дозвук.… …   Физическая энциклопедия

  • аэродинамика — и, ж. aérodynamique f. Научная дисциплина, изучающая законы движения воздуха и других газов и их взаимодействие с движущимися в них телами. БАС 2. разделяется на Аэростатику, Пневматику и Аэродинамику. Ян. 1 296. Лекс. Ян. 1803 …   Исторический словарь галлицизмов русского языка

  • аэродинамика — Раздел механики сплошных сред, в котором изучаются закономерности движения газа, преимущественно воздуха, а также механическое и тепловое взаимодействие между газом и движущимися в нем телами. [ГОСТ 23281 78] Тематики аэродинамика летательных… …   Справочник технического переводчика

  • АЭРОДИНАМИКА — (от аэро... и греческого dynamis сила), наука о законах движения газов и взаимодействии их с твердыми телами. Сложилась в 1 й четверти 20 в. в связи с потребностями развивающейся авиации в аналитическом определении подъемной силы летательного… …   Современная энциклопедия

  • АЭРОДИНАМИКА — раздел аэромеханики, в котором изучаются законы движения газа (напр., воздуха) и силы, возникающие на поверхности обтекаемого газом тела. Сформировалась в 20 в. в связи с развитием авиации. Основные задачи аэродинамики: определение сил,… …   Большой Энциклопедический словарь

  • АЭРОДИНАМИКА — АЭРОДИНАМИКА, аэродинамики, мн. нет, жен. (от греч. aer воздух и dynamis сила) (научн.). Учение о сопротивлении воздуха при движении тел. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • АЭРОДИНАМИКА — АЭРОДИНАМИКА, и, жен. Раздел аэромеханики, изучающий движение воздуха и других газов и взаимодействие газов с обтекаемыми ими телами. | прил. аэродинамический, ая, ое. А. нагрев (повышение температуры тела, движущегося с большой скоростью в… …   Толковый словарь Ожегова

dic.academic.ru

аэродинамика - это... Что такое аэродинамика?

аэродина́мика (от греч. aḗr — воздух и dýnamis — сила) — 1) раздел механики сплошных сред, в котором изучаются закономерности движения жидкостей и газов (преимущественно воздуха), а также механическое и тепловое взаимодействие между жидкостью или газом и движущимися в них телами. Эта наука является одной из древнейших естественных наук, она возникла и развивалась под непосредственным воздействием запросов практики. При этом во все времена основное внимание привлекали две фундаментальные проблемы: проблема сопротивления аэродинамического и проблема подъёмной силы.

Период классической гидродинамики начинается работами И. Ньютона, который много внимания уделял исследованию проблемы сопротивления, а его интерес к этой проблеме был обусловлен принципиальным вопросом о возможности движения тел в пустоте (вопреки утверждениям философских школ Аристотеля и Декарта). В своих работах Ньютон различал 4 вида сопротивления: зависящее от плотности среды, т. е. от инерции, от сцепления частиц жидкости между собой, от силы трения между поверхностью тела и жидкостью, от упругости среды. Сопротивление, вызываемое сцеплением и упругостью, принималось Ньютоном постоянным и считалось очень малым, в особенности при больших скоростях. По Ньютону, сопротивление трения пропорционально скорости и также мало, в специальных случаях им можно пренебречь; для оценки сопротивления трения он дал классическую формулу, согласно которой касательное напряжение трения пропорционально производной скорости среды по нормали к направлению движения. Впоследствии эта формула была обобщена на случай произвольного движения среды и стала основной при решении задач механики вязкой жидкости. Сопротивление инерции пропорционально квадрату скорости и никогда не может исчезнуть, поскольку инерция является всеобщим механическим свойством для любых материальных тел. Все эти результаты носят общий, но качественный характер. Вместе с тем Ньютоном была предложена первая модель среды. Согласно этой модели, среда состоит из не взаимодействующих между собой частиц-корпускул; при столкновении с поветью тела корпускулы теряют компонент импульса, нормальный поверхности тела, и тем самым обусловливают давление в рассматриваемой точке поверхности, и, следовательно, сопротивление X и подъёмную силу Y тела, для расчёта которых получаются достаточно простые формулы. В частности, для плоской пластины площадью S, установленной под углом атаки α к потоку жидкости (газа) плотности ρ, набегающему со скоростью V∞, нормальная сила N определяется формулой Ньютона: N = ρV2∞·Ssin2α; отсюда Y = N cos α и X = N sin α. По существу, это первый количественный результат в теоретической гидродинамике (см. Ньютона теория обтекания).

Дальнейший прогресс в гидродинамике и в теории сопротивления, в частности, связан с именами Д. Бернулли, Ж. Д’Аламбера и Л. Эйлера. Если в целом охарактеризовать их роль в гидродинамике, то первым двум мы обязаны формулированию физических принципов, а последнему — математическому развитию этих принципов. Свои исследования они проводили в рамках механики сплошной среды, при этом, основываясь на экспериментальных результатах, они пренебрегали влиянием сил трения и рассматривали жидкость как идеальную, преимущественно несжимаемую, а само течение предполагали безвихревым, потенциальным, поскольку массовые силы (гравитационные силы), которые вызывают движение жидкости, являются потенциальными. Причину сопротивления они видели в давлении, передаваемом от жидкости к поверхности тела, обтекаемой, в отличие от ньютоновской концепции, безударно. Важным результатом обобщения экспериментальных исследований явилось Бернулли уравнение, которое связывает между собой значения потенциала массовых сил, давления и скорости вдоль линии тока и позволяет рассчитать поле давления по известному полю скоростей.

Большое внимание изучению проблемы сопротивления уделял Д’Аламбер. Исследуя при указанных выше предположениях сопротивление тела, в частности сферы, он пришёл к результату, который противоречил всему практическому опыту и вошёл в А. как Д’Аламбера—Эйлера парадокс: сопротивление тела при безотрывном обтекании его установившимся потоком идеальной несжимаемой жидкости равно нулю. Строго математически этот результат был получен Эйлером, который впервые вывел полную систему уравнений, описывающих движение идеальной жидкости, как несжимаемой, так и сжимаемой: неразрывности уравнение и уровня импульсов — Эйлера уравнения. После Эйлера работы по уравнениям гидродинамики были продолжены Ж. Лагранжем (см. Лагранжа уравнения). Под руководством Д’Аламбера был проведён большой объём экспериментальных исследований по сопротивлению тел и было установлено: а) сопротивление пропорционально квадрату скорости;б) сопротивление пропорционально площади миделя;в) закон пропорциональности нормальной силы квадрату синуса угла наклона обтекаемой плоскости справедлив только для углов между 55 и 90°;

г) влияние вязкости среды чрезвычайно мало, особенно при больших скоростях.

Обширные исследования, преимущественно экспериментальные, были проведены и другими исследователями той эпохи, например Дюбуа, Ж Борда. Именно под влиянием экспериментальных результатов Дюбуа Л. Навье в 1822 вывел уравнения динамики вязкой несжимаемой жидкости. В последующие годы уравнения движения вязкой жидкости были также получены С. Пуассоном (1829), А. Сен-Венаном (1343) и Дж. Стоксом (1845) (см. Навье—Стокса уравнения).

Большой вклад в теоретическую гидродинамику — динамику вязкой жидкости внёс Стокс. Кроме вывода дифференциальных уравнений, описывающих движение вязкой жидкости, он впервые применил метод анализа, основанный на разложении общего движения частицы жидкости на три составляющие: перемещение, деформацию и вращение (позднее этот метод был использован Г. Гельмгольцем для анализа движения идеальной жидкости). Стоксом было исследовано течение вязкой жидкости при малых Рейнольдса числах Re (Re ≤ 1) когда инерционными силами можно пренебречь по сравнению с силами давления и трения, так называемое ползущее движение, и была получена Стокса формула:Х = 3πμV∞d,где μ — динамическая вязкость, d — диаметр сферы (интерес к обтеканию тел при малых числах Рейнольдса был связан с изучением проблемы движения капель туманов). Однако проблема сопротивления при умеренных и больших значениях Re; которая представляла наибольший практический интерес, оставалась нерешённой из-за сложной математической природы нелинейных дифференциальных уравнений Навье—Стокса.

Стоксом было высказано несколько важных идей. Он, например, писал, что ламинарное течение при определенных условиях «неустойчиво, так что малейшая причина вызывает нарушение состояния жидкости, которое увеличивается с движением тела до тех пор, пока все движение не примет совершенно другую форму». Указанная проблема в последующем была исследована О. Рейнольдсом, который в результате экспериментального изучения движения жидкости в трубах установил существование, кроме ламинарного, турбулентного течения и переход ламинарного течения в турбулентное при достижении некоторого вполне определенного значения Re. Им же был предложен статистический подход к изучению осреднённых характеристик турбулентных течений со сдвигом и введён в рассмотрение тензор напряжений турбулентного трения.

Поскольку уравнения динамики вязкой жидкости очень сложны для теоретического анализа и с их помощью нельзя было решать прикладные задачи, то в теоретической гидродинамике большое внимание продолжало уделяться исследованиям движения идеальной жидкости. Существенный прогресс в науке связан с деятельностью Гельмгольца, который впервые исследовал закономерности вихревых течений жидкости, на возможность существования которых указывал ещё Эйлер. Гельмгольц (1858) вывел уравнение, определяющее скорость изменения вектора завихренности ω = rotV для фиксированной частицы жидкости. На основании этого уравнения он доказал теоремы о сохраняемости вихревых линий и интенсивности вихревых трубок в потоке несжимаемой жидкости при наличии потенциала массовых сил. Отсюда следует, что вихревые трубки не могут заканчиваться внутри жидкости: они либо образуют замкнутые кольца, либо опираются на твёрдые или свободные поверхности. На этих фундаментальных результатах базируются вихревые теории винта и крыла конечного размаха. Разработка теории вихревых течений была продолжена Г. Ганкелем, У. Томсоном (лордом Кельвином), Э. Бельтрами и др.

Стоксом в 1847 было высказано утверждение о возможности существования в потоке идеальной жидкости поверхности разрыва. Эта идея была разработана Гельмгольцем для струйных течений жидкости. Для решения проблемы сопротивления Г. Кирхгоф предложил схему обтекания с образованием полубесконечной застойной области, свободные границы которой представляют собой поверхности тангенциальных разрывов (см. также Струйных течений теория). Большой вклад в разработку этого направления был сделан лордом Рэлеем. В результате его исследований вычислены коэффициент сопротивления некоторых простых тел, например, пластины, установленной под углом к направлению потока. Эта теория хотя и объясняла причину появления сопротивления и позволяла получать количественные результаты для простейших случаев, которые, правда, не согласовывались с экспериментальными данными, но не решала проблемы сопротивления в целом; оставалось ещё много неясных вопросов: что вызывает сход линий тока с поверхности тела, когда и при каких условиях реализуется безотрывная и отрывная схема течения и т. д.

В конце этого периода созрели объективные условия для зарождения и развития теории полёта и были проведены достаточно обширные экспериментальные исследования, например О. Лилиенталем, в натурных условиях и на аэродинамических установках по сравнительному анализу аэродинамических свойств различных тел. Несмотря на значительный прогресс в теоретических и экспериментальных исследованиях, основные проблемы А. — проблема сопротивления и проблема подъёмной силы — оставались ещё нерешёнными.

Начало периода современной аэродинамики обычно связывают с первыми аэродинамическими исследованиями Ф. Ланчестера, относящимися к 1891, а также с работами Н. Е. Жуковского, С. А. Чаплыгина и Л. Прандтля. Ланчестер был инженером-практиком и результаты своих исследований, по его словам, излагал «на простом английском языке без математических украшении», но современники его не понимали из-за сложного характера подачи материала. Результаты исследований Ланчестера были опубликованы только в 1907. Запоздалое опубликование этих результатов стало причиной того, что его идеи не оказали существенного влияния на развитие А., а были выдвинуты и разработаны независимо от него другими учёными.

Идея о циркуляции скорости Г как причине создания подъёмной силы была выдвинута Жуковским (1906); им была доказана теорема (см. Жуковского теорема), согласно которой Y = ρV∞Г. Принципиальное значение этой теоремы состоит в том, что создание подъёмной силы она связывает с наличием циркуляции скорости вокруг профиля или, иными словами, с интенсивностью вихря присоединенного. Но в идеальной жидкости образование вихрей невозможно, следовательно, это явление должно быть связано с проявлением неидеальных свойств среды — её вязкостью. Поэтому теорема Жуковского позволяет рассчитывать значение подъёмной силы по заданной циркуляции Г, но само значение Г оставляет произвольным. Для получения искомого решения в рамках идеальной жидкости необходимо наложить дополнительное условие, которое было предложено Чаплыгиным и впервые использовано Жуковским для расчёта подъёмной силы профиля крыла под углом атаки (см. Чаплыгина—Жуковского условие). Оно состоит в требовании конечности скорости на острой задней кромке профиля. Т. о., проблема подъёмной силы, возникающей при обтекании аэродинамического профиля, была принципиально разрешена, а разработанные в последующие годы методы расчёта позволяли проводить её оценку для конкретных условий.

Первая попытка распространения вихревой теории на случай крыла конечного размаха была предпринята Ланчестером; она получила признание в научном мире и связала его имя с этой проблемой. Правда, независимо от него эта идея была высказана и разработана математически Жуковским (1912) применительно к гребному винту, а в завершённом виде теория крыла конечного размаха была создана Прандтлем (1918). При решении этой задачи предполагалось, что с задних острых кромок лопасти или крыла в поток дискретно или непрерывно сходят вихри, которые образуют за телом соответственно систему вихрей свободных или вихревую пелену. Характеристики завихренности при тех или иных предположениях связываются с геометрическими характеристиками лопасти или крыла, а в рамках теории идеальной жидкости разработанные эффективные методы построения поля скоростей по заданному полю завихренности позволяют рассчитать аэродинамические характеристики обтекаемого тела (см., например, Крыла теория); в частности, было показано, что коэффициент индуктивного сопротивления cxi~cy2, где су — коэффициент подъёмной силы (см. Аэродинамические коэффициенты). Результаты расчётов по этим теориям достаточно хорошо согласуются с экспериментом для «хорошо обтекаемых» тел с острой задней кромкой.

В этот период проблема сопротивления по прежнему находилась в центре внимания исследователей. Решающий вклад в её разрешение был внесён в начале XX в. Прандтлем. В 1904 он показал, что даже для очень маловязких жидкостей, какими являются воздух и вода, силы трения необходимо учитывать, но лишь в тонком пристеночном слое, в котором наблюдаются большие нормальные градиенты скорости, а потому инерционные силы и силы трения имеют одинаковый порядок. Таким образом, задачу об обтекании тела потоком вязкой жидкости при больших числах Рейнольдса Прандтль свёл к решению двух более простых задач; задачи об обтекании тела потоком идеальной жидкости, описываемой системой уравнений Эйлера, и задачи о течении вязкой жидкости в пограничном слое, описываемой полученными им уравнениями, которые в математическом отношении проще уравнений Навье—Стокса, а при их решении распределения давления и скорости на внешней границе пограничного слоя являются известными функциями. Пограничный слой, образующийся на поверхности тела, всюду тонок и в первом приближении не оказывает влияния на внешний потенциальный поток. Однако в областях с положительным градиентом давления ситуация может существенно измениться: пристеночные частицы жидкости могут затормаживаться и даже двигаться в направлении, не совпадающем с направлением потока на внешней границе пограничного слоя. В результате этого возникает отрыв пограничного слоя, потенциальное течение оттесняется от поверхности и за телом образуется обширная область вихревого течения, наличие которой обусловливает значительное увеличение сопротивления тела.

Экспериментальные исследования сопротивления «плохо обтекаемых» тел, когда за телом имеется обширная область завихренного течения, показали, что при определенном значении числа Рейнольдса сопротивление резко уменьшается — кризис сопротивления, или парадокс Эйфеля—Прандтля. Это явление было впервые экспериментально установлено А. Эйфелем (1912), а его объяснение дано Прандтлем: явление связано с переходом ламинарного течения в пограничном слое в турбулентное; турбулентный пограничный слой вследствие интенсивных обменных процессов может выдержать значительно большие положительные градиенты давления, благодаря чему точка отрыва пограничного слоя резко смещается вниз по потоку и существенно уменьшается сопротивление давления.

Экспериментальные исследования также показали, что в определенном диапазоне чисел Рейнольдса течение жидкости в кормовой части «плохо обтекаемых» тел является нестационарным; так, например, при обтекании кругового цилиндра точки отрыва пограничного слоя на его верхней и нижней сторонах периодически перемещаются в противофазе по поверхности тела (автоколебания), оторвавшиеся пограничные слои сносятся вниз по потоку и сворачиваются в вихри; в результате за телом образуется цепочка дискретных вихрей — вихревая дорожка. Анализ плоской задачи о сопротивлении тела, за которым образуется вихревая дорожка, был проведён Т. фон Карманом (1912) в рамках теории идеальной жидкости. [Предполагалось, что силы трения (неидеальность жидкости) существенны лишь в пограничном слое, определяют его отрыв и массу жидкости, участвующей в вихревом движении.] Он показал, что устойчивым (точнее, минимально неустойчивым) является расположение дискретных вихрей в шахматном порядке при определенном соотношении между шагом вихрей в ряду и расстоянием между рядами вихрей; для этих условий он получил формулу для расчёта сопротивления тела, содержащую две неизвестные постоянные, значения которых должны определяться из эксперимента. Обобщение этой задачи на пространственный случай было дано Жуковским (1919).

С этого момента проблема сопротивления в принципиальном отношении была решена и началось бурное развитие А. невязкой и вязкой жидкости: углублялись знание и понимание исследуемых явлений, разрабатывались эффективные методы анализа и успешно решались прикладные задачи, а теоретическая А. оказывала всё большее влияние на формирование облика летательных аппаратов. Поэтому необходимо рассмотреть те трудности и проблемы, которые возникали по мере возрастания скорости полёта при оценке подъёмной силы и сопротивления летательного аппарата.

После окончания 1-й мировой войны авиация интенсивно развивалась и скорости самолётов возросли настолько, что появилась необходимость учёта сжимаемости воздуха, которая характеризуется параметром подобия — Маха числом М.

Поскольку профили крыла самолёта были относительно тонкими, а углы атаки малыми, то в дозвуковой А. широко применялась линеаризация уравнений, лежащая в основе Прандтля—Глауэрта теории. В рамках этой теории с помощью простого преобразования (преобразования Прандтля—Глауэрта) задача сводится к решению уравнения Лапласа для преобразованного профиля, и мы имеем дело с задачей обтекания тела несжимаемой жидкостью, для анализа которой разработаны эффективные методы. Таким образом, эта теория дала простой и эффективный способ учёта сжимаемости воздуха.

Накануне 2-й мировой войны в связи с увеличением скорости полёта самолётов встала задача о более строгом учёте сжимаемости, чем это делалось на основе линейной теории. В основу анализа был положен подход, предложенный Чаплыгиным ещё в 1902 — годографа метод. Он показал, что для дозвуковых течений уравнение для определения потенциала скорости, являющееся нелинейным в физической плоскости х, у, становится линейным в плоскости годографа скорости — в плоскости переменных V, θ, где V — модуль вектора скорости, θ — угол между осью х и направлением вектора скорости. Чаплыгин не только получил систему уравнений в плоскости годографа, но предложил приближённый метод её решения с помощью линеаризации уравнения адиабаты. На основе этих идей были предложены усовершенствованные методики учёта влияния сжимаемости газа на распределение давления по поверхности профиля крыла. Существенный вклад в разработку этого направления внесли С. А. Христианович, а за рубежом — Карман и Тзян.

В конце 30-х — начале 40-х гг. числа Маха полёта М∞ самолётов превысили критическое значение М*, при котором в некоторой точке на профиле скорость потока достигает значения, равного местной скорости звука. При М∞ > М* на профиле образуются местные сверхзвуковые зоны, которые замыкаются ударными волнами (скачками уплотнения). В ударных волнах происходит необратимый переход части кинетической энергии потока в тепловую, что обусловливает появление волнового сопротивления, механизм которого определенным образом моделируется в рамках теории идеального газа. При М∞→1 волновое сопротивление стремительно возрастает, и это поставило перед развивающейся реактивной авиацией проблему звукового барьера. Для повышения значения критического числа Маха и преодоления звукового барьера наиболее эффективной мерой оказалось применение стреловидного крыла (см. Стреловидного крыла теория). Использование стреловидного крыла позволило преодолеть трансзвуковой диапазон скоростей полёта и во второй половине 40-х гг. достичь сверхзвуковых скоростей полёта. В теоретическом плане анализ трансзвуковых течений значительно усложняется из-за того, что возмущения, вносимые тонким телом в поток, имеют разный порядок по пространственным координатам; в рамках возмущений теории получаются нелинейные уравнения — уравнения Кармана. На основе этих уравнений были проанализированы многие задачи и установлены законы трансзвукового подобия.

При анализе сверхзвуковых течений около тонких тел и профилей вновь широко используется линеаризированная теория, которая позволяет получить ряд важных для решения прикладных задач результатов: Аккерета формулы, площадей правило, обратимости теорему и др. Они дали возможность рационально проводить компоновку летательного аппарата и достаточно надёжно рассчитывать его аэродинамические характеристики.

При больших сверхзвуковых (гиперзвуковых) скоростях движения летательного аппарата возникает ряд новых проблем, с которым и не приходилось сталкиваться при до-, транс- и умеренных сверхзвуковых скоростях полёта. Наиболее важной среди них является проблема аэродинамического нагревания; она, как правило, решается либо в рамках теории пограничного слоя, либо экспериментальным путём. С повышением скорости полёта температуры воздуха у поверхности летательного аппарата возрастают настолько, что начинают проявляться свойства реального газа (см. Реального газа эффекты); поэтому при расчёте аэродинамических характеристик летательного аппарата необходимо использовать сложные соотношения, отражающие реальное поведение термодинамических функций и коэффициент переноса воздуха (см. Переносные свойства среды) в зависимости от температуры и давления. Кроме того, с увеличением числа Маха сокращается область возмущённого течения в окрестности летательного аппарата (головная ударная волна располагается вблизи обтекаемой поверхности), а толщина пограничного слоя увеличивается. Всё это приводит к тому, что потоки идеального и вязкого газа начинают взаимодействовать между собой. По энергетическим соображениям движение летательного аппарата с большими сверх- и гиперзвуковыми скоростями происходит на больших высотах при относительно малых числах Рейнольдса (из-за малой плотности воздуха), что также содействует усилению эффекта взаимодействия потоков. Всё это значительно усложняет теоретический анализ, и во многих случаях для получения надёжных данных необходимо уже использовать уравнения Навье—Стокса, численный анализ которых существенно более труден, чем анализ уравнений Эйлера и Прандтля. Наконец, следует отметить, что при движении летательного аппарата на больших высотах начинают проявляться молекулярные эффекты, и расчёт аэродинамических характеристик должен уже проводиться не с помощью уравнений механики сплошной среды, а па основе уравнений кинетической теории газов (см. Разреженных газов динамика).

А. продолжает интенсивно развиваться; уделяется значительное внимание исследованию ещё неразрешённых фундаментальных проблем, таких, например, как турбулентность, отрывные течения (плоские и пространственные). Большое значение приобрела вычислительная А., которая существенно расширяет возможности теоретических исследований. Надо отметить, что вычислительная А., в свою очередь, оказывает немалое влияние на развитие вычислительной техники из-за очень сложной математической природы её дифференциальных уравнений. Современное состояние А. позволяет ей успешно решать сложные прикладные задачи по формированию облика летательного аппарата и определению его аэродинамических характеристик, включая их оптимизацию, и тем самым активно содействовать прогрессу авиационной и аэрокосмической техники.

В. А. Башкин, В. В. Сычёв.

2) А. летательных аппаратов — раздел прикладной механики, служащий научным фундаментом для аэродинамического проектирования летательных аппаратов. Включает методологию научных исследований, сочетающую теоретическое и экспериментальное изучение физических явлений с целью использования полученных знаний в практике конкретной научно-исследовательской и опытно-конструкторской работы. В зависимости от вида летательных аппаратов различают А. самолётов, А. вертолётов и т. д.

А. летательных аппаратов как синтез теоретических и экспериментальных исследований возникла из потребностей практики и служит прежде всего её интересам, поэтому развитие А. летательных аппаратов тесно связано с этапами развития авиации.

Как научное направление А. сформировалась в первой четверти XX в., то есть вскоре после появления первых летательных аппаратов тяжелее воздуха. В конце XIX — начале XX вв. из-за отсутствия должной теоретической и экспериментальной базы для определения аэродинамических характеристик летательных аппаратов и выбора рациональных параметров их компоновки могли быть использованы лишь простейшие теоретические и экспериментальные результаты и методы. Поиск пригодных на практике решений часто осуществлялся методом проб и ошибок, что приводило ко многим неудачам и даже катастрофам. Развитие авиации настоятельно требовало создания специальных исследовательских центров и организаций, основная деятельность которых была бы направлена на решение возникавших практических задач и которые могли бы обеспечить конструкторов методами расчёта, рекомендациями, справочным материалом и тем самым создать научную основу аэродинамическим проектированиям летательных аппаратов.

В 1904 под руководством Жуковского был создан первый в мире Аэродинамический институт. В последующие годы в ряде стран были организованы государственные исследовательские институты (в Великобритании, США, Германии, Франции). В 1918 по инициативе Жуковского создаётся Центральный аэрогидродинамический институт. Созданием исследовательских центров по авиации был завершён этап становления и формирования А. летательных аппаратов как раздела прикладной механики.

Задача выбора рациональных параметров крыла, одна из основных в аэродинамическом расчёте самолёта, встала в полной мере одновременно с созданием первых самолётов. На начальном этапе развития авиации были поняты значение профиля крыла (вогнутый профиль имел лучшие характеристики, чем плоская пластинка) и роль удлинения крыла (для увеличения площади крыла с точки зрения аэродинамики выгоднее увеличивать его размах, а не хорду). После того как Прандтль развил теорию крыла конечного размаха, это положение получило теоретическое обоснование — увеличение удлинения крыла приводит к уменьшению индуктивного сопротивления.

Успешные полёты первых самолётов вызвали появление новых конструкций и их модификаций. Совершенствование аэропланов в те годы осуществлялось не только в направлении увеличения грузоподъёмности и улучшения лётных качеств, но и в значительной мере было направлено на улучшение управляемости летательного аппарата, его устойчивости и взлётно-посадочных характеристик. (Вопросы размещения органов балансировки и управления, выбора их размеров и конструктивных схем, а также связанного с этим выбора параметров систем управления были объектом исследований и экспериментов многие годы.) В это время берёт своё начало и один из разделов А. летательных аппаратов — аэродинамика органов управления. Среди первых самолётов наблюдалось большое разнообразие аэродинамических схем, определявшихся расположением органов продольной балансировки и управления. Многие из этих схем получили дальнейшее развитие и более или менее широко применялись в последующие годы (так называемая нормальная схема — горизонтальное оперение за крылом, схемы «утка» и «бесхвостка»). Определились и стали затем традиционными аэродинамические органы управления самолётом в полёте. Это руль направления, обеспечивающий путевое управление и располагающийся на киле (килях); руль высоты (его называют и рулём глубины), обеспечивающий продольное управление и располагающийся на стабилизаторе (дестабилизаторе); элероны, служащие для управления по крену; элевоны — органы управления, совмещающие функции руля высоты и элеронов.

Начальный период развития авиации характеризуется большим многообразием аэродинамических схем, что явилось отражением поиска компромисса между требованиями А. и прочности авиационных конструкций. Среди первых самолётов были монопланы, бипланы, трипланы и даже полипланы. Для аэропланов первого периода лучшей оказалась бипланная схема. Самолёты, выполненные по такой аэродинамической схеме, при равной с монопланом суммарной площади крыла оказывались более лёгкими, а следовательно, более грузоподъёмными. По условиям прочности крыльям бипланов можно было придать (и это делали) большее удлинение, снизив тем самым индуктивное сопротивление. Первые монопланы ввиду недостаточной жесткости и прочности тонкого крыла нуждались в большом числе подкрепляющих элементов (подкосов, растяжек и т. п.), что сильно увеличивало их аэродинамическое сопротивление и не позволяло повысить удлинение крыла, а с ним и аэродинамическое качество летательных аппаратов. Только применение профилей с большой относительной толщиной (начиная примерно с 20-х гг.) позволило перейти к аэродинамической схеме свободнонесущего моноплана.

Характерно, что первоначально эта схема получила распространение на самолётах, от которых требовались повышенная грузоподъёмность и дальность (экономичность), например, на тяжёлых бомбардировщиках и пассажирских машинах. В то же время для самолётов, от которых требовались высокие и манёвренные данные и скорости (истребители), примерно до начала 30-х гг. применялась исключительно бипланная схема, более выгодная в весовом отношении для самолётов небольших размеров со сравнительно малой удельной нагрузкой на крыло. Поэтому в 20—30-х гг. аэродинамическое совершенствование самолётов проходило по линии как бипланной, так и монопланной схем. Но в конце 30-х гг. проявились заметные преимущества монопланной схемы для самолётов почти всех назначений и она стала господствующей в последующие периоды развития авиации. Наряду с грузоподъёмностью скорость полёта становилась всё более важным фактором для военных летательных аппаратов и в экономической оценке пассажирских самолётов. Уровень аэродинамического совершенства летательных аппаратов стал играть всё возрастающую роль в повышении эффективности (боевой или экономической) использования летательных аппаратов.

Вообще в 20—40-х гг. А. летательных аппаратов развивалась очень быстрыми темпами. Этому способствовало то обстоятельство, что в конце 20-х — начале 30-х гг. в разных странах в основном уже были созданы совершенные для того времени экспериментальные установки, позволявшие развивать наиболее важные направления исследований в области теоретической и экспериментальной А. для надёжного решения возникавших практических задач, Интенсивное развитие получила теория крыла конечного размаха и теория воздушного винта — важнейшие разделы А. летательных аппаратов. Результаты теоретических исследований после тщательной экспериментальной проверки и обобщения принимались за основу в практической работе. Разработанные методы расчёта позволяли обоснованно определять наивыгоднейшую форму крыла в плане, влияние крыла на хвостовое оперение и тем самым выбирать форму и расположение горизонтального оперения, учитывать взаимодействие несущих поверхностей (биплан, полиплан). Появилась возможность учитывать влияние работающего воздушного винта на распределение нагрузки по размаху крыла и работу хвостового оперения и на этой основе вводить поправки в результаты эксперимента в аэродинамических трубах.

Наличие аэродинамических труб больших размеров и чувствительной измерительной аппаратуры позволило развернуть широкие исследования с целью выяснения возможностей существенного улучшения аэродинамических и, следовательно, летно-технических характеристик летательных аппаратов. Использование зализов, улучшение обводов фюзеляжа, устранение различных щелей и выступов, специальное капотирование двигателей, применение сначала обтекателей шасси, а затем убирающегося шасси существенно видоизменили облик самолётов и в значительной степени обусловили резкое улучшение их лётных данных в 30-е гг.

Очень большое значение для развития А. летательных аппаратов и самолётостроения в целом имела постройка больших (натурных) аэродинамических труб. Создание таких чрезвычайно сложных в инженерно

Энциклопедия «Авиация». - М.: Большая Российская Энциклопедия. Свищёв Г. Г.. 1998.

avia.academic.ru


Смотрите также